Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Варикап, стабилитрон, импульсный, туннельный и лавинный диоды. Принцип действия, характеристики, параметры, области применения




а) Так обозначают выпрямительные, высокочастотные, СВЧ, импульсные и диоды Гана; б) стабилитроны; в)варикапы; г) тоннельные диоды;

Варикапом называется полупроводниковый диод, у которого в качестве основного параметра используется барьерная ёмкость, величина которой варьируется при изменении обратного напряжения. След-но, варикап примен как конденсатор переменной ёмкости, управляемый напряжением.

Принцип действия. Если к p-n переходу приложить обратное напряжение, то ширина потенциального барьера увеличивается.

При подключении обратного напряжения ширина перехода ΔХ увеличивается, следовательно, барьерная ёмкость будет уменьшаться. Основной характеристикой варикапов является вольт-фарадная характеристика С=f(Uобр).

Основные параметры варикапов.

1. Максимальное, минимальное и номинальное значение ёмкости варикапа.

2. Коэффициент перекрытия - отношение максимальной ёмкости к минимальной.

3. Максимальное рабочее напряжение варикапа.

Стабилитроны. Стабилитроном называется полупроводниковый диод, предназначенный для стабилизации уровня постоянного напряжения. Стабилизация – поддержание какого-то уровня неизменным. По конструкции стабилитроны всегда плоскостные и кремниевые. Принцип действия стабилитрона основан на том, что на его вольтамперной характеристике имеется участок, на котором напряжение практически не зависит от величины протекающего тока.

Таким участком является участок электрического пробоя, а за счёт легирующих добавок в полупроводник ток электрического пробоя может изменяться в широком диапазоне, не переходя в тепловой пробой.

Так как участок электрического пробоя – это обратное напряжение, то стабилитрон включается обратным включением.

Резистор Ro задаёт ток через стабилитрон таким образом, чтобы величина тока была близка к среднему значению между Iст.min и Iст.max. Такое значение тока называется номинальным током стабилизации. Принцип действия. При уменьшении входного напряжения ток через стабилитрон и падение напряжения на Ro может уменьшаться, а напряжения на стабилитроне и на нагрузке останутся постоянными, исходя из вольтамперной характеристики. При увеличении входного напряжения ток через стабилитрон и URo увеличивается, а напряжение на нагрузке всё равно остаётся постоянным и равным напряжению стабилизации.

Вывод: стабилитрон поддерживает постоянство напряжения при изменении тока через него от Iст.min до Iст.max.

Основные параметры стабилитронов:

1. Напряжение стабилизации Uст.

2. Минимальное, максимальное и номинальное значение тока стабилизации Iст.min, Iст.-max, Iст.ном.

3. ΔUст. – изменение напряжения стабилизации.

4. Дифференциальное сопротивление на участке стабилизации:

5. Температурный коэффициент стабилизации.

Стабилитроны, предназначенные для стабилизации малых напряжений, называются стабисторами.

Импульсные диоды. Импульсные диоды предназначены для работы в импульсных цепях с длительностями импульсов от нескольких нс до нескольких мкс. Рассмотрим работу обычного p-n перехода при подаче на него импульсного напряжения.

В промежуток времени от 0 до t1 p-n переход закрыт (обратным напряжением пренебрегаем).

В момент t1 p-n переход открывается, но ток через него и через нагрузку достигает своего максимального, то есть установившегося значения, не мгновенно, а за время tуст., которое необходимо для заряда барьерной ёмкости p-n перехода. В момент времени t2 p-n переход почти мгновенно закрывается. Область p-проводимости оказывается насыщенной неосновными носителями зарядов, то есть электронами. Не успевшие рекомбинировать электроны под действием поля закрытого p-n перехода возвращаются в n-область, за счёт чего сильно возрастает обратный ток. По мере ухода электронов из p-области обратный ток уменьшается, и через время tвосст. p-n переход восстанавливает свои «закрытые» свойства. В импульсных диодах время восстановления и установления должны быть минимальными. С этой целью импульсные диоды конструктивно выполняются точечными или микросплавными. Толщина базы диода делается минимальной. Полупроводник легируют золотом для увеличения подвижности электронов.

В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области.[1] При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона[2], вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.

Лавинный диод – п/п диод обладающий отрицательным дифференциальным сопротивлением. В следствии развития лавинно-пролетной неустойчивости, обусловленной ударной ионизацией и дрейфом носителей заряда в p-n переходе в режиме обратного смещения. (Присутствует эффект ударной ионизации.).

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 3237; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.