Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принцип работы ЛПД




 

Схематически механизм работы р-n ЛПД можно представить следующим образом. Рассмотрим для опре­деленности запорный слой обратно смещенного плавно­го p-n перехода (рис. 7). Он представляет собой уча­сток полупроводника, в котором практически отсутству­ют подвижные носители заряда, а приложенная к р-n переходу разность потенциалов компенсируется полем объемного заряда ионов примеси N n и N p, положитель­ным в одной части запорного слоя (n-слой) и отрица­тельным — в другой (p-слой). Этот участок ограничен с обеих сторон нейтральными слоями полупроводника. Напряженность электрического поля Е максимальна в плоскости х =0, где объемный заряд ионов примеси меняет знак (плоскость технологического перехода). По мере увеличения напряжения смещения запорный слой расширяется и напряженность электрического поля воз­растает. Когда поле в плоскости технологического пере­хода достигает некоторого критического значения Е = Е np, начинается интенсивный процесс ударной иониза­ции атомов кристалла подвижными носителями заряда, приводящий к лавинному умножению числа носителей и образованию новых электронно-дырочных пар.

Область, где происходит рождение носителей заряда, ограничена более или менее уз­ким слоем — так называемым слоем умножения, рас­положенным вблизи технологического перехода, где поле максимально (рис. 7). Образованные в слое умноже­ния электроны и дырки дрейфуют под действием сильного электрического поля к границе нейтрального полу­проводника через пролетные участки запорного слоя, причем дырки движутся через р-слой, а, электроны через п-слой. Так как напряженность электрического поля в большей части р-п перехода очень велика, то скорость дрейфа носителей практически постоянна и не завялит от поля.

Рис. 7. Схема плавного р-п перехода ЛПД:

а) запирающий слой;

б) распределение ионов примеси;

в) измение электрического поля.

 

Таким образом, обратно смещенный р-п переход при напряжении, близком к пробивному, представляет собой диодный промежуток, в котором роль катода играет слой умножения, а роль пролетного пространства — остальная часть запорного слоя. Эмиссия такого катода носит ярко выраженный «полевой» характер — ток, вы­ходящий из слоя умножения, возрастает или убывает в зависимости от напряженности электрического поля в этом слое. Лавинная природа тока эмиссии обуслов­ливает его инерционность — для развития лавины требу­ется определенное время, так что мгновенное значение электрического поля определяет не саму величину лавин­ного тока, а лишь скорость его изменения во времени. Поэтому изменение тока не следует мгновенно за изме­нением электрического поля, а отстает от него по фазе на величину, близкую к p/2.

Такой р-п переход близок по свойствам к оптималь­ному варианту полевого диода, в котором ток эмиссии отстает от поля на четверть периода. Под действием приложенного к р-п переходу переменного напряжения из слоя умножения выходят «пакеты» носи­телей заряда, которые сразу попадают в тормозящее вы­сокочастотное поле, так что энергия взаимодействия этих носителей с полем отрицательна почти при любой ши­рине р-п перехода. Отсутствие модуля­ции скорости носителей в этом случае лишь улучшает высокочастотные свойства диода.

Поэтому основные выводы о свойствах полевого дио­да с запаздывающей эмиссией, сделанные выше, приме­нимы и к лавинно-пролетному диоду. Это касается, в частности, соображений о влиянии объемного заряда под­вижных носителей на колебательные свойства генератора на лавинно-пролетном диоде. Попадая в пролетное пространство, основные носители частично нейтрализуют пространственный заряд ионов примеси и снижают поле в слое умножения. Этот эффект облегчает условия само­возбуждения генератора на частотах выше характери­стической и препятствует возникновению паразитных колебаний на более низких частотах, где активное со­противление диода положительно.

Вместе с тем, ЛПД имеет специфические особенно­сти, связанные с лавинной природой тока, из которых принципиальной является одна: сдвиг по фазе между полем и током в слое умножения, вследствие конечной ширины последнего, как правило, превышает p/2, и слой умножения сам по себе уже обладает отрицательным сопротивлением. В большинстве практически реализуе­мых р-п структур этот эффект является второстепенным, однако для одного класса диодов он играет решающую роль, определяя основные особенности их высокочастот­ных характеристик.

Сдвиг фаз между током и напряжением на диоде определяется в этом случае инерционностью процесса ударной ионизации и пролетными эффектами во всем запорном слог. Вместе эти эффекты обеспечивают достаточно высокую эффективность взаимодействия носителей тока с высо­кочастотным электрическим полем, сравнимую с эффек­тивностью взаимодействия в ЛПД других типов.

Наряду с лавинно-пролетным могут, очевидно, су­ществовать и другие полу­проводниковые диоды с ди­намическим отрицательным сопротивлением.

2) Pэл, Рвых, ηэл и полный η

Re=-4.5-3=-7.5

= (2*1.6*10^(-19)*45/(9.1*10^(-31)))^0.5=3970000

q d =ω/Ve =10*6.26*10^9/3970000 =15768

 

γ=1-cosQd=(1+0.94)/(10*6.26*10^9*0.45*10^(-9)* 15768)=4.367 *10^(-6)

β=(5.3/10)^2=0.28

-Re*(1- β*Ф(В))= γ* β*Ф(В)

-Re+ Re *β*Ф(В)= γ* β*Ф(В)

Ф(В))=-Re/(γ* β- Re *β)=7.5/(4.367 *10^(-6)*0.28+0.28*7.5)=0.57

B=3.1

=0.1*3.1 *(1-0.28*0.57)/ 0.28=0.93

=-0.5*0.93^2*(-7.5)=3.24

=4.5/(4.5+3)=0.6

Pвх=U0I0=45*0.1=4.5

Рвых=0.6*4.5=2.7

ηэл=Pэл/ Pвх=3.24/4.5=0.72

 

1) Ге́лий-нео́новый ла́зер — лазер, активной средой которого является смесь гелия и неона. Гелий-неоновые лазеры часто используются в лабораторных опытах и оптике. Имеет рабочую длину волны 632,8 нм, расположенную в красной части видимого спектра.

Устройство гелий-неонового лазера

Рабочим телом гелий-неонового лазера служит смесь гелия и неона в пропорции 5:1, находящаяся в стеклянной колбе под низким давлением (обычно около 300 Па). Энергия накачки подаётся от двух электрических разрядников с напряжением около 1000 вольт, расположенных в торцах колбы. Резонатор такого лазера обычно состоит из двух зеркал — полностью непрозрачного с одной стороны колбы и второго, пропускающего через себя около 1 % падающего излучения на выходной стороне устройства.

Гелий-неоновые лазеры компактны, типичный размер резонатора — от 15 см до 0,5 м, их выходная мощность варьируется от 1 до 100 мВт.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 1108; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.