Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Молекулярный ион водорода




Вращающийся электрон в магнитном поле

Гамильтониан частицы со спи­ном 1/2 в магнит­ном поле

Красители

Молекула бензола

Молекула водорода

Ядерные силы

Молекулярный ион водорода

ДРУГИЕ СИСТЕМЫ С ДВУМЯ состояниями

В дальнейшем полезно (и читая, и произнося вслух) отличать арабские 1 и 2 и римские I и II. Мы считаем, что удобно для арабских, цифр резервировать названия «один» и «два», а I и II читать как «первый», «второй».

Очень жаль, но нам придется ввести новое обозначение. Раз бук­вы р и Е заняты у нас импульсом и энергией, то мы поостережемся опять обозначать ими дипольный момент и электрическое поле. Напомним, что в этом параграфе m означает электрический дипольный момент.

Например, как легко убедиться, одно из допустимых решений имеет вид

 

 

 

 


 

 

Глава 8

 

 

 

В предыдущей главе мы обсудили некото­рые свойства молекулы аммиака в предположении, что это система о двух состояниях (или двухуровневая система). На самом деле, конечно, это не так — у нее есть множество состояний: вращения, колебания, перемещения и т. д., но в каждом из этих состояний движе­ния следует говорить о паре внутренних со­стояний из-за того, что атом азота может быть переброшен с одной стороны плоскости трех атомов водорода на другую. Сейчас мы рас­смотрим другие примеры систем, которые в том или ином приближении можно будет считать системами с двумя состояниями. Многое здесь будет приближенным, потому что всегда име­ется множество других состояний, и в более точном анализе их следовало бы учитывать. Но в каждом из этих примеров мы окажемся в силах очень многое понять, рассуждая толь­ко о двух состояниях.

Раз мы будем иметь дело только с двух­уровневыми системами, то нужный нам га­мильтониан будет выглядеть так же, как и в предыдущей главе. Когда гамильтониан не зависит от времени, то известно, что имеются два стационарных состояния с определенными (и обычно разными) энергиями. В общем слу­чае, однако, мы будем начинать наш анализ с выбора базисных состояний (не обязательно этих стационарных состояний), таких, которые, скажем, имеют другой простой физический смысл. Тогда стационарные состояния систе­мы будут представлены линейной комбинацией этих базисных состояний.

Для удобства подытожим важнейшие уравнения, выведенные в гл. 7, Пусть первоначально в качестве базисных состояний были приняты | 1 > и | 2 >. Тогда любое состояние |y> пред­ставляется их линейной комбинацией:

Амплитуды Сi (под этим подразумеваются как C 1так и С 2) удовлетворяют двум линейным дифференциальным уравнениям

где и i, и j принимают значения 1 и 2.

Когда члены гамильтониана Hij не зависят от t, то два состояния с определенной энергией (стационарные), которые мы обозначим

обладают энергиями

Для каждого из этих состояний оба С имеют одинаковую зависимость от времени. Векторы состояний | I > и | II >, кото­рые отвечают стационарным состояниям, связаны с нашими первоначальными базисными состояниями | 1 > и | 2 >формулами

Здесь а —комплексные постоянные, удовлетворяющие равен­ствам

Если H 11 и H 22 между собой равны, скажем оба равны Е 0, а H 12= H 21=- А, то E I = E 0+ A, ЕII 0 -А, и состоя­ния | I > и | II > особенно просты:

Эти результаты мы хотим теперь использовать, чтобы рас­смотреть ряд интересных примеров, взятых из химии и физики. Первый пример — это ион молекулы водорода. Положительно ионизированная молекула водорода состоит из двух протонов и одного электрона, как-то бегающего вокруг них. Каких состояний можно ожидать для этой системы, если расстояние между протонами велико? Ответ вполне ясен: электрон распо­ложится вплотную к одному протону и образует атом водорода в его наинизшем состоянии, а другой протон останется одиноч­кой, положительным ионом. Значит, когда два протона удале­ны друг от друга, то можно себе наглядно представить одно физическое состояние, в котором электрон «придан» одному из протонов. Существует, естественно, и другое, симметричное первому состояние, в котором электрон находится возле вто­рого протона, а ионом оказывается первый протон. Эту пару состояний мы и сделаем базисными, обозначив их | 1 > и | 2 >. Они показаны на фиг. 8.1.

Фиг. 8.1. Совокупность базисных состояний для двух протонов и электрона.

 

Конечно, на самом деле у электрона возле протона имеется множество состояний, потому что их комбинация может существовать в виде одного из возбуждён­ных состояний атома водорода. Но нас сейчас не интересует это разнообразие состояний, мы будем рассматривать лишь случай, когда атом водорода пребывает в наинизшем состоя­нии — своем основном состоянии,— и пренебрежем на время спином электрона. Мы просто предположим, что для всех на­ших состояний спин электрона направлен вверх по оси z.

Чтобы убрать электрон из атома водорода, требуется 13,6 эв энергии. Столько же энергии — очень много по нашим тепе­решним масштабам — понадобится и на то, чтобы электрон ока­зался на полпути между протонами (коль скоро сами протоны сильно удалены друг от друга). Так что по классическим поня­тиям электрону немыслимо перескочить от одного протона к другому. Однако в квантовой механике это возможно, хоть и не очень вероятно. Существует некая малая амплитуда того, что электрон уйдет от одного протона к другому. Тогда в пер­вом приближении каждое из наших базисных состояний | 1 > и | 2 > будет иметь энергию Е 0, равную просто сумме энергий атома водорода и протона. Матричные элементы Н 11и H 22 гамильтониана мы можем принять приближенно равными Е 0. Другие матричные элементы Н12 и Н21, представляющие собой амплитуды перехода электрона туда и обратно, мы опять за­пишем в виде - А.

Вы видите, что это та же игра, в какую мы играли в послед­них двух главах. Если пренебречь способностью электрона перескакивать туда и обратно, то два состояния будут иметь в точности одинаковую энергию. Эта энергия, однако, расщеп­ляется на два энергетических уровня из-за того, что электрон может переходить туда и назад, и чем больше вероятность пере­хода, тем больше расщепление. Стало быть, два уровня энер­гии системы равны Е 0 и Е 0- А, и состояния, у которых такие энергии, даются уравнениями (8.7).

Из нашего решения мы видим, что если протон и водород­ный ион как-то расположить близко один к другому, то элек­трон не останется подле одного протона, а будет перескакивать от протона к протону и обратно. Если вначале он был близ од­ного из протонов, то затем он начнет колебаться туда и назад между состояниями | 1 > и | 2 >, давая решение, меняющееся во времени. Чтобы получить решение, отвечающее самой низ­кой энергии (которое не меняется со временем), необходимо, чтобы вначале система обладала одинаковыми амплитудами пребывания электрона возле каждого из протонов. Кстати, вспомните, что электронов отнюдь не два; мы совсем не утверж­даем, что вокруг каждого протона имеется электрон. Имеется только один электрон, и это он имеет одинаковую амплитуду (1/Ö2 по величине) быть в том или ином положении.

Дальше, для электрона, который находится близ одного протона, амплитуда А оказаться близ другого зависит от рас­стояния между протонами. Чем они ближе один к другому, тем больше амплитуда. Вы помните, что в гл. 5 мы говорили об амплитуде «проникновения» электрона «сквозь барьер», на что по классическим канонам он не способен. Здесь то же самое положение дел. Амплитуда того, что электрон переберется к другому протону, спадает с расстоянием примерно по экспо­ненте (для больших расстояний). Раз вероятность, а следова­тельно, и значение А при сближении протонов возрастают, то возрастает и расстояние между уровнями энергии. Если си­стема находится в состоянии | I >, то энергия Е 0 +А с умень­шением расстояния растет так, что эти квантовомеханические эффекты приводят к силе отталкивания, стремящейся развести протоны. Если же система пребывает в состоянии | II >, то полная энергия при сближении протонов убывает; сущест­вует сила притяжения, подтягивающая протоны один к другому. Эти энергии меняются с расстоянием между протонами пример­но так, как показано на фиг. 8.2.

Фиг. 8.2. Энергии двух стационарных состояний иона h+2 как функция расстояния между двумя протонами.

 

Тем самым у нас появляется квантовомеханическое объяснение силы связи, скрепляющей

ион H+2.

Однако мы позабыли об одной вещи. В дополнение к только что описанной силе имеется также электростатическая сила взаимного отталкивания двух протонов. Когда оба протона очень удалены друг от друга (как на фиг. 8.1), то «голый» про­тон видит перед собой только нейтральный атом, так что элек­тростатической силой можно пренебречь. При очень тесных сближениях, однако, «голый» протон оказывается порой «внут­ри» электронного распределения, т. е. в среднем он ближе к протону, чем к электрону. Появляется некоторая добавочная электростатическая энергия, которая, конечно, положительна. Эта энергия — она тоже зависит от расстояния — должна быть включена в Е 0. Значит, за Е 0мы должны принять нечто похожее на штриховую кривую на фиг. 8.2; она быстро поды­мается на расстояниях, меньших, чем радиус атома водорода. Энергию переворота А надо вычесть и прибавить к этому Е 0. Если это сделать, то энергии ЕI и ЕII будут меняться с меж­протонным расстоянием D, как показано на фиг. 8.3.

Фиг. 8.3. Уровни энергии иона H+2 как функция межпротонного расстояния D (EH=13,6 эв).

 

[На ри­сунке мы воспроизвели результаты более детальных выкладок. Межпротонное расстояние дано в ангстремах (1Å=10-8 см), а избыток энергии над протоном плюс водородным ионом да­ется в единицах энергии связи атома водорода, так называе­мых «ридбергах» (13,6 эв).]Мы видим, что состояние | II > имеет точку минимума энергии — равновесную конфи­гурацию (условие наинизшей энергии) для иона Н+2. Энергия в этой точке ниже, чем энергии отдельно протона и отдельно водородного иона, так что система связана. Отдельный элект­рон действует так, что скрепляет протоны. Химик назвал бы это «одноэлектронной связью».

Этот род химической связи часто также называют «квантовомеханическим резонансом» (по сходству с двумя связанными маятниками, о котором мы уже говорили). Но звучит это таин­ственнее, чем оно есть на самом деле; это только тогда «резо­нанс», когда базисные состояния с самого начала неудачно выбраны, как у нас и было! А если выбрать состояние | II >, вы сразу получите наинизшее энергетическое состояние — и все.

Можно и по-иному объяснить, отчего энергия этого состоя­ния должна быть ниже, чем у протона плюс атома водорода. Представим себе электрон возле двух протонов, удаленных на определенное, но не очень большое расстояние. Вы помните, что электрон возле одиночного протона «размазан» из-за прин­ципа неопределенности. Он ищет равновесия, пытаясь раздо­быть энергию пониже (низкую кулоновскую потенциальную энергию) и не оказаться при этом сжатым в пространстве че­ресчур тесно, что привело бы к высокой кинетической энергии (из-за соотношения неопределенности DрDх»h). Если же про­тонов два, то будет больше места, где у электрона может быть низкая потенциальная энергия. Он может размазаться (снижая тем самым свою кинетическую энергию), не повышая при этом своей потенциальной энергии. В итоге его энергия ниже, чем в атоме водорода. Тогда почему же у другого состояния | I > энергия выше? Но заметьте, что это состояние есть разность состояний | 1 > и | 2 >. Вследствие симметрии | 1 > и | 2 > разность должна иметь нулевую амплитуду того, что электрон окажется на полпути между протонами. Это означает, что электрон немного сильнее ограничен в пространстве, что и приводит к большей энергии.

Следует сказать, что наше приближенное рассмотрение иона H+2 как двухуровневой системы рассыпается в прах, едва лишь протоны сблизятся до минимума энергии на кривой фиг. 8.3; тогда больше не получается хорошего значения истин­ной энергии связи. На малых удалениях энергии двух «со­стояний» на самом деле уже не равны Е 0; требуется более тонкое квантовомеханическое рассмотрение.

Положим, мы теперь заинтересуемся, что случилось бы, если бы вместо двух протонов у нас были два разных объекта, скажем один протон и один положительный ион лития (причем обе частицы по-прежнему имеют по единичному положитель­ному заряду). В этом случае два члена Н 11и H 22 в гамильто­ниане больше не совпадали бы; они были бы совершенно раз­личны. Если бы оказалось, что разность (H 11- H 22) по абсо­лютной величине много больше А=-H 12, то сила притяжения стала бы очень слабой. В этом можно убедиться следующим образом.

Если в (8.3) подставить H 12 H 21= A 2, то мы получим

Когда H 11- H 22 много больше А 2, корень довольно точно равен

Тогда энергии обращаются в

Теперь они почти вплотную совпадают с энергиями H 11 и H 22 изолированных атомов и только чуть-чуть отличаются из-за наличия амплитуды перескока А.

Разность энергий III) равна

Добавка к расстоянию между уровнями из-за переброса электрона уже не равна ; она составляет А /(Н 11 22 ) — часть этой величины (что по предположению много меньше единицы). Кроме того, сама зависимость ЕIII от расстояния между ядрами сейчас намного слабее, чем для иона Н+2: в нее тоже входит множитель А/(Н 11 22).Можно поэтому понять, от­чего связь несимметричных двуатомных молекул, как правило, очень слаба.

В нашей теории иона Н+2 мы открыли объяснение механиз­ма, с помощью которого электрон, распределенный между двумя протонами, создает в итоге силу притяжения между ними даже тогда, когда они очень удалены друг от друга. Сила притяжения проистекает от уменьшения энергии системы, вы­зываемого тем, что у электрона есть возможность прыгать от одного протона к другому. При таких прыжках система пере­ходит от конфигурации атом водорода — протон к конфигура­ции протон — атом водорода и обратно. Процесс символически можно записать так:

Сдвиг энергии, вызываемый этим процессом, пропорционален амплитуде А того, что электрон с энергией ─WH (его энергия связи в атоме водорода) может от одного протона перейти к другому.

При больших расстояниях R между протонами электроста­тическая потенциальная энергия электрона близка к нулю почти во всем том пространстве, которое он вынужден преодо­леть, делая прыжок. Так что в этом пространстве электрон движется почти как свободная частица в пустом пространстве, но обладая при этом отрицательной энергией! В гл. 1 [уравне­ние (1.7)] мы видели, что амплитуда для частицы определенной энергии перейти с одного места на другое, удаленное на рас­стояние r, пропорциональна

где р — импульс, отвечающий заданной энергии. В теперешнем случае (применяется нерелятивистская формула) р определя­ется из выражения

А это значит, что р —число мнимое:

(другой знак перед корнем приводит к абсурду).

Стало быть, следует ожидать, что амплитуда А для иона

Н+2 будет меняться как

при больших расстояниях R между протонами. Сдвиг энергии, вызываемый электронной связью, пропорционален А;значит, существует сила, сближающая два протона, которая пропор­циональна (при больших R) производной от (8.10) по R.

Наконец, для полноты следует заметить, что в одноэлектронной системе с двумя протонами есть еще один эффект, кото­рый тоже приводит к зависимости энергии от R. Мы пока им пренебрегали, поскольку он обычно не очень важен, за исклю­чением как раз тех больших расстояний, на которых энергия обменного члена А убывает экспоненциально до очень малых величин. Новый эффект, о котором мы говорим,— это электро­статическое притяжение протона к атому водорода, возникаю­щее по той же причине, по какой любой заряженный предмет притягивает к себе незаряженный. «Голый» протон создает электрическое поле x(изменяющееся как 1 /R 2)возле нейтраль­ного атома водорода. Атом становится поляризованным, при­обретая наведенный дипольный момент m, пропорциональный x. Энергия диполя есть (mx,т. е. пропорциональна x2, или 1 /R 4. Значит, в выражении для энергии системы существует член, убывающий как четвертая степень расстояния (это поправка к e 0). Эта энергия спадает с расстоянием медленнее, чем сдвиг А, даваемый формулой (8.10). На каких-то больших расстоя­ниях R член с R 4становится важнейшим, определяющим из­менение энергии с R, и поэтому единственной оставшейся си­лой. Заметьте, что электростатический член для обоих базис­ных состояний имеет один знак (раз сила притягивает, то энер­гия отрицательна), а потому и для обоих стационарных со­стояний его знак один и тот же, в то время как член электрон­ного обмена А для двух стационарных состояний дает разные знаки.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 702; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.033 сек.