Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Развитие радиоламп ( диод, триод )




Что такое электроника

ЛЕКЦИЯ 1. ИСТОРИЧЕСКИЙ ОБЗОР

Формула Герона

Формула Герона - формула выражающая площадь треугольника через три его стороны (используя полупериметр).

 

S - площадь треугольника

a, b, c - длины 3-х сторон треугольника

p - полупериметр треугольника

См. также: Программа для расчета площади треугольника.

 

1. Что такое электроника?

2. Развитие радиоламп (диод, триод).

3. Транзисторы.

Что такое электроника? – Это передача, приём, обработка и хранение информации с помощью электрических зарядов. Это наука, технические приёмы, промышленность.

Что касается информации, то всегда, когда было человечество, это всё было. Человеческое мышление, разговорная речь, узелки на память, сигнальные костры, семафорный телеграф и т.д. – это приём, передача, обработка и хранение информации. И это было не меньше чем 5000 лет. Но только недавно, в конце 18 века, были изобретены телефон и телеграф – устройства для передачи и приёма информации с помощью электрических сигналов. Это – начало электроники, как она сейчас называется.

 

 
 

Электроника довольно быстро развивается. В 1895 г. Попов изобрёл и построил действующую модель радио – электронное устройство для беспроводной передачи информации - грозоотметчик. Герц провёл опыты по распространению радиоволн, Маркони развил и применил эти опыты для построения радио с выбором передающей радиостанции по длине волны излучения.

Но в начале не было хорошего усилительного элемента для электрических устройств. Поэтому настоящее развитие электроники началось с 1904 г., когда была изобретена радиолампа – диод, а в 1907 г. – триод. Они выглядят так, как показано на рис. Слева изображена радиолампа – диод, которая состоит из герметичного баллона, а внутри баллона – вакуум и несколько металлических конструкций с выведенными наружу электродами. Одна из них – нить накала, по ней пропускается электрический ток, который нагревает её до температуры в 700-2300 оС. Эта нить разогревает катод, к которому подводится отрицательное напряжение, и катод испускает электроны. К аноду подводится положительное напряжение, разность потенциалов довольно высокая (100-300 В), и поэтому электроны, вылетевшие из катода, полетят к аноду, и следовательно, в лампе потечёт ток. При смене знака напряжения электроны из холодного анода вылетать не будут, не будет и тока. Поэтому диод может исполнять роль выпрямителя переменного напряжения.

На правом рис. изображена радиолампа – триод. В ней всё тоже, что и у диода, но есть дополнительный электрод – управляющая сетка. Обычно на сетку подаётся отрицательный потенциал, и она отталкивает вылетевшие из катода электроны. Поэтому

чем более отрицательный потенциал сетки, тем меньше электронов протечёт от катода к аноду. Таким образом, потенциал сетки служит для управления током в радиолампе. Обычно сетка в лампе расположена к катоду гораздо ближе, чем анод, поэтому малыми потенциалами сетки можно управлять большими токами лампы. Если напряжение к аноду подаётся через большое сопротивление, то и потенциалы на аноде будут меняться сильнее, чем на сетке. Это хороший электронный усилитель напряжений.

Радиолампы прошли очень большой путь развития. Появились более совершенные тетроды и пентоды – лампы с четырьмя и пятью электродами, обладающие большими коэффициентами усиления. Стали делать более сложные радиолампы: с более чем пятью электродами. Из них наибольшее распространение получили сдвоенные радиолампы: сдвоенные диоды, триоды, диод-триоды и т.д. Появились газонаполненные лампы – газотроны. В них есть газ, правда, находящийся под небольшим давлением. Обычно он ионизируется, появляются ионы – атомы без электрона, т.е. имеющие положительный заряд.

Протекание тока в таких лампах более сложное: он может быть как электронным, так и ионным. Размеры радиоламп были очень разными: от миниатюрных пальчиковых до громадных в рост человека.

Изобретение триода открыло большие возможности развития электроники. Мировое количество выпускаемых радиоламп выросло ко второй мировой войне до многих миллионов штук в год. Были изобретены и созданы многие устройства по приёму и передаче информации. Телефон и телеграф, радиоприёмники и радиопередатчики. Вместо патефонов появились проигрыватели пластинок, появились магнитофоны. Начали разрабатываться телевизоры.

Но это всё только часть задач электроники – приём, передача и хранение информации. А где же обработка информации, наиболее важная, сложная и интересная её часть? Очевидно, что её может делать только вычислительное устройство.

К началу Второй мировой войны уже появились электронные арифмометры – обработчики цифровой информации. Но настоящее развитие этой области электроники началось с возникновения электронных вычислительных машин (ЭВМ). Оно началось в 1948 году – в США была сделана первая ЭВМ на радиолампах – ЭНИАК. Вот некоторые её параметры:

Количество радиоламп 18 000 шт
Кол-во др. элементов 100 000 шт
Вес 30 т
Площадь 100 м2
Рассеиваемая мощность 100 КВт
Быстродействие 10 000 Гц

Как видно из этой таблицы – это грандиозное сооружение. И оно обладало всеми характерными чертами современной ЭВМ: память, которая содержала данные и программу их обработки, арифметическое-логическое устройство, связь с внешними устройствами. Но, конечно, у неё ещё было и много недостатков. По сравнению с современным уровнем техники, эта ЭВМ менее сложная, чем простой калькулятор, особенно если он может программироваться. Но по весу (30 т по сравнению с 50 г), по занимаемой площади, по рассеиваемой мощности современные калькуляторы её существенно превосходят. Особенно важно, что их быстродействие никак не меньше 1 МГц, т.е. в сто раз больше, чем у первой ЭВМ.

Но гораздо более существенным является срок службы первой ЭВМ. В основном он определялся сроком службы радиолампы. А он определяется интенсивностью отказов

l = 10-5 ч-1

Т.е. из 100 000 радиоламп одна откажет за время 1 час. Или другими словами, срок службы одной радиолампы равен

Т = 1/l = 105 ч

Это много. Действительно, если считать, что в сутках примерно по 25 ч, то это 4 000 дней, или примерно 12 лет работы до отказа. Это неплохо.

Но когда вместо 5-20 радиоламп одновременно должны работать 18 000 радиоламп, ситуация резко меняется. Все радиолампы служат 12 лет, но выходят из строя случайно, в любой момент времени. И выход хоть одной радиолампы из строя приводит к выходу всего устройства. В этом случае для всего устройства можно записать:

lобщ = N * l = 18 000 * 10-5 = 0,18 ч-1

А срок службы всего устройства равен

Т общ = 5 ч

Т.е. срок службы ЭНИАКа всего 5 ч! В среднем через каждые 5 ч какая-то радиолампа выходила из строя. Найти из 18 000 радиоламп неработающую не так-то просто. А после того, как она найдена, надо её заменить, и провести проверку ЭВМ на работоспособность. На всё это уходило ещё около 5 ч.

Но нам надо делать более сложные ЭВМ. Если мы усложним её так, что в ней будет в 10 раз больше радиоламп, срок службы уменьшится в 10 раз, т.е. будет равен 0,5 ч. А на ремонт будет уходить ещё больше времени. Это – катастрофа количеств.

Всё дальнейшее развитие электроники связано с борьбой с катастрофой количеств. Для этого надо было понизить интенсивность отказов радиолампы. Но радиолампа – сложное устройство. Во-первых, внутри неё глубокий вакуум, если он потеряется, анодный ток радиолампы понизится из-за соударений электронов с атомами воздуха и с ионами, получившимися в результате этих столкновений. Сетка лампы – это проволочная спираль, которая намотана вокруг катода. Она слабая, не выдерживает перегрузок, вибраций. Нить накала нагрета до высокой температуры, поэтому испускает не только электроны, но и довольно много атомов, т.е. нить всё время испаряется. Устранить все эти недостатки и повысить срок службы не удалось.




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 915; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.