Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поток информации, веществ и энергии в клетке




Поток информации

Благодаря наличию потока информации клетка, используя многовековой эволюционный опыт предков, создает органи­зацию, соответствующую критериям живого, сохраняет и поддержива­ет эту организацию во времени, несмотря на меняющиеся условия внешней среды, передает ее в ряду поколений. В потоке информации участвуют ядро (ДНК хромосом), макромолекулы, переносящие информацию в цитоплазму (иРНК), цитоплазматический аппарат транскрипции (рибосомы и полисомы, тРНК, ферменты активации аминокислот). На завершающем этапе этого потока полипептиды, синтезированные на полисомах, приобретают третичную и четвертич­ную структуру и используются в качестве катализаторов или структур­ных блоков. Кроме ядерного генома, основного по объему заключенной информации, в эукариотических клетках функционируют также геномы митохондрий, а в зеленых растениях и хлоропластов.

Кодирование заключается в записи определенных сведений при помощи специальных символов с целью придать информации компактность, обеспечить ее использование неоднократно и по частям, создать удобства при транспортировке.

Символами кода ДНК служат дезоксирибонуклеотиды, различаю­щиеся по азотистому основанию (адениловое, гуаниловое, тимидиловое, цитидиловое), поэтому алфавит четырехбуквенный. Кодовой группой служит кодон — участок молекулы ДНК, состоящий из трех нуклеотидов. Это делает код триплетным. Информация записывается в линейном порядке по длине молекулы ДНК в виде последовательности кодонов. Код ДНК неперекрывающийся, так как каждый нуклеотид

входит в один кодон. Он не имеет запятых и в пределах блока информа­ции, соответствующего, например, одному полипептиду, кодоны сле­дуют друг за другом без перерывов.

Символом кода белка служат аминокислоты. Они же соответству­ют и кодовым группам. Информация также записывается в линейном порядке по длине молекулы полипептида в виде последовательности аминокислот.

Сопоставление участка молекулы ДНК как начального пункта и отвечающего ему по содержанию полипептида как завершающего пункта потока информации указывает на коллинеарность кодов ДНКи белка: кодоны следуют в том же порядке, что и остатки аминокислот, кодируемых ими.

Положение конкретного аминокислотного остатка в молекуле полипептада может быть обозначено в ДНК при помощи одного из нескольких кодонов-синонимов, что свидетельствует о вырож­денности кода ДНК. Указанное свойство вытекает из соотношения объемов словарей кодов ДНК и белка. Сочетанием по три из четырех возможных дезоксирибонуклеотидов образуются 64 различных кодона, тогда как в состав белка входит 20 аминокислот. Вырожденность кода ДНК носит регулярный характер: большая часть

информации приходится на первые два нуклеотида колона. Каждой аминокислоте соответствует не более двух таких начальных дуплета, тогда как число кодонов-синонимов может доходить до шести (например, для аргинина). Вырожденность кода и информационная неравнозначность нуклеотидов в кодоне влияют на фенотипическое выражение точковых мутаций. Действительно, наряду с изменениями, приводящими к замене одного аминокислотного остатка другим, возможны «безмолвные» мутации, если изменение переводит кодон в синоним. Хотя замена кодона синонимом не нарушает последова­тельности аминокислот в полипептиде, она может повлиять на скорость его синтеза. Три кодона из 64, названные бессмысленными, не кодируют аминокислот. Они служат терминаторами и обознача­ют точку прекращения считывания информации. Код ДНК универсален в том смысле, что он тождествен у всех организмов. Единичные факты, не согласующиеся с таким заключени­ем, касаются деталей пунктуации (например, обозначения начала считывания у кишечной палочки и в клетке млекопитающего) и считывания бессмысленных кодонов.

Перекодирование информации происходит в процессе биосинтеза белка. На первом этапе, обозначаемом как транскрипция, исходная информация ДНК считывается путем синтеза рибонуклеиновых кислот. Последние комплементарны лишь одной из полинуклеотидных цепей ДНК, место тимина в них занимает близкое х нему азотистое основание — урацил. В эукариотической клетке этот этап осуществляется в ядре, а также независимо в митохондриях и хлоропластах. В результате тран­скрипции образуется несколько разновидностей РНК, при этом иРНК приобретает информацию о последовательности аминокислот в поли­пептидах, а рРНК и тРНК обеспечивают перенос информации с иРНК на полипептиды.

Особенность транскрипции с ядерной ДНК эукариотической клетки заключается в образовании первоначально большего количества РНК, чем то, которое затем примет в синтезе полипептидов непосред­ственное участие. Избыточная РНК, природа и функции, которой не ясны, разрушается в ходе преобразования (процессинга) РНК перед транспортом ее из ядра в цитоплазму.

Считывание информации иРНК с переносом ее на белок (этап трансляции) происходит в цитоплазме. Центральная роль здесь принадлежит различным тРНК, которых в клетке имеется несколько десятков. Каждый образец тРНК способен присоединять определенную аминокислоту в активированном состоянии (обогащенную энергией). В результате активации аминокислоты и присоединения ее к тРНК образуется комплекс «аминоацил-тРНК». Благодаря наличию антикодона — последовательности из трех нуклеотидов, комплементарных нуклеотидам кодона данной аминокислоты — тРНК узнает место этой аминокислоты в полипептиде в соответствии с последовательностью кодонов иРНК. Так как перенос информации на белок осуществляется не с ДНК, а с иРНК, кодоны определенных аминокислот обозначают в соответствии с нуклеотидным составом РНК, Таким образом, именно тРНК считывает информацию с иРНК.

Сборка молекул полипептида происходит на рибосоме, которая обеспечивает требуемое расположение участников процесса трансляции: иРНК, комплексов «аминоацил-тРНК» и «тРНК-строящийся поли­пептид». Представление о функции рибосом дает рибосомный цикл синтеза белка.

Функционирующая рибосома состоит из большой и малой субъединиц и молекулы иРНК. В одном из двух ее активных учас­тков — пептидальном (I) происходит наращивание полипептида, а к другому — аминоацильному (II) прикрепляются тРНК с активиро­ванными аминокислотами. Комплекс «аминоацил-тРНК», прибывший первым, инициирует считывание и занимает участок I. В участке II фиксируется второй аналогичный комплекс, соответствующий пер­вому смысловому коду иРНК. После образования между амино­кислотами пептидной связи тРНК участка I высвобождается. На ее место в виде комплекса с двумя аминокислотными остатками перемещается тРНК, занимающая участок II. К участку II при-1 соединяется очередной комплекс «аминоацил-тРНК», отвечающий следующему смысловому кодону иРНК. Описанный цикл повторяется, пока не будет достигнут терминирующий кодон иРНК (УАА, УАГ или УГА), по отношению к которому тРНК не существует. На этой стадии рибосома распадается на субъединицы с высвобождением иРНК и полипептида.

Поток энергии

Поток энергии у представителей разных групп организмов представлен внутриклеточными механизмами энергообеспече­ния — брожением, фото- или хемосинтезом, дыханием.

Центральная роль в биоэнергетике клеток животных принадлежит дыхательному обмену. Он включает реакции расщепления низкокало­рийного органического «топлива» в виде глюкозы, жирных кислот, аминокислот и использования выделяемой энергии для синтеза высококалорийного клеточного «топлива» в виде АТФ. АТФ и другие соединения, богатые энергией в биологически утилизируемой форме, называются макроэргическими. Энергия АТФ, непосредственно или будучи перенесенной на другие макроэргические соединения, например креатинфосфат, используемый в мышцах, в разнообразных процессах преобразуется в тот или иной вид работы — химическую (синтезы), осмотическую (поддержание градиентов веществ), электрическую, механическую, регуляторную. Среди органелл такой клетки особое место в дыхательном обмене принадлежит митохондриям, с внутренней мембраной которых связаны ферменты дыхательной цепи, а также матриксу цитоплазмы, в котором протекает процесс бескислородного расщепления глюкозы — анаэроб­ный гликолиз. Из преобразователей энергии химических связей АТФ в работу наиболее изучена механохимическая система поперечнополоса­той мышцы. Она состоит из сократительных белков и фермента, расщепляющего макроэргические соединения с высвобождением энер­гии.

Особенностью потока энер­гии растительной клетки служит фотосинтез — механизм пре­образования энергии солнечного света в энергию химических связей органических веществ.

Механизмы энергообеспече­ния клетки высокоэффективны. Коэффициенты полезного дей­ствия хлоропласта достига­ют 25%, а митохондрии — 45— 60%, существенно превосходя аналогичный показатель паровой машины (8%) или двигателя внутреннего сгорания (17%).

Реакции дыхательного обме­на не только поставляют энер­гию, но и снабжают клетку строительными блоками для синтеза разно­образных молекул. Ими служат многие продукты расщепления пище­вых веществ. Особая роль в этом принадлежит центральному звену дыхательного обмена — циклу Кребса, осуществляемому в митохондриях. Через этот цикл проходит путь углеродных атомов (углеродных скелетов) большинства соединений, служащих промежу­точными продуктами синтеза химических компонентов клетки, а также переключение метаболизма клетки с одного преобладающего пути на другой, например, с углеводного на жировой. Таким образом, дыхательный обмен одновременно составляет ведущее звено потока веществ, объединяющего метаболические пути расщепления и синтеза углеводов, белков, жиров, нуклеиновых кислот.

Другие внутриклеточные механизмы

Потоки информации, энергии и вещества осуществляются непре­рывно и составляют необходимое условие существования клетки как живой системы.

Кроме структур и процессов, прямо включенных в названные потоки, в клетке функционируют механизмы, которые, хотя и могут быть названы дополнительными, так же являются жизненно необходи­мыми. Так, лизосомы, воздействуя ферментами на пиноцитированный или аутофагированный материал, обеспечивают гидролитическое расщепление макромолекул до низкомолекулярных соединений. Они же разрушают структуры, утратившие свое функциональное значение. Пероксисомы ликвидируют возникающие в клетке перекиси, токсичные для живой протоплазмы. Организация внутриклеточных транспортных потоков обусловливается активностью микротрубочек и микрофиб­рилл.

 




Поделиться с друзьями:


Дата добавления: 2015-06-04; Просмотров: 2872; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.