Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Непрерывность функции в точке




НЕПРЕРЫВНОСТЬ ФУНКЦИЙ

Пусть функция у=ƒ(х) определена в точке хо и в некоторой окрестности этой точки. Функция y=f(x) называется непрерывной в точке х0, если существует предел функции в этой точке и он равен значению функции в этой точке, т. е.

Равенство (19.1) означает выполнение трех условий:

1) функция ƒ (х) определена в точке x0 и в ее окрестности;

2) функция ƒ(х) имеет предел при х→хо;

3) предел функции в точке хо равен значению функции в этой точке, т. е. выполняется равенство (19.1).

Так как то равенство (19.1) можно записать в виде

Это означает, что при нахождении предела непрерывной функции ƒ(х) можно перейти к пределу под знаком функции, то есть β функцию ƒ(х) вместо аргумента х подставить его предельное значение хо.

Например, . В первом равенстве функция и предел поменялись местами (см. (19.2)) в силу непрерывности функции еx .

<< Пример 19.1

Вычислить

Решение:

Отметим, что 1n(1+х)~х при х→0.

Можно дать еще одно определение непрерывности функции, опираясь на понятия приращения аргумента и функции.

Пусть функция у=ƒ(х) определена в некотором интервале (а;b). Возьмем произвольную точку хоє(а;b). Для любого хє(а;b) разность х-хо называется приращением аргумента х в точке х0 и обозначается ∆х («дельта х»): ∆х=х-x0. Отсюда х=х0+∆х.

Разность соответствующих значений функций ƒ(х)-ƒ(х0) называется приращением функции ƒ(х) в точке х0 и обозначается ∆у (или ∆ƒ или ∆ƒ(х0)): ∆у=ƒ(х)-ƒ(х0) или ∆у=ƒ(х0+∆х)-ƒ(х0) (см. рис. 119).

Очевидно, приращения ∆х и ∆у могут быть как положительными, так и отрицательными числами.

Запишем равенство (19.1) в новых обозначениях. Так как условия х→х0 и х-х0→0 одинаковы, то равенство (19.1) принимает вид или

Полученное равенство (19.3) является еще одним определением непре-рывности функции в точке: функция у=ƒ(х) называется непрерывной в точке х0, если она определена в точке х0 и ее окрестности и выполняется равенство (19.3), т. е. бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Исследуя непрерывность функции в точке, применяют либо первое (равенство (19.1)), либо второе (равенство (19.3)) определение.

<<< Пример 19.2

Исследовать на непрерывность функцию у=sinx.

Решение: Функция у=sinx определена при всех х є R Возьмем произвольную точку х и найдем приращение ∆у:

Тогда

так как произведение ограниченной функции и δ.м.ф. есть δ.м.ф.

Согласно определению (19.3), функция у=sinx непрерывна в точке х.

Аналогично доказывается, что функция у=cos х также непрерывна.

Точки разрыва и их классификация.

 

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.

Если односторонний предел (см. выше) , то функция называется непрерывной справа.

 

 
 

 


х0

 

 

Если односторонний предел (см. выше) , то функция называется непрерывной слева.

 
 

 

 


х0

 

Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.

 

Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

 

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.

 

Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

 

Пример. Функция Дирихле (Дирихле Петер Густав(1805-1859) – немецкий математик, член- корреспондент Петербургской АН 1837г)

не является непрерывной в любой точке х0.

Пример. Функция f(x) = имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к.

.

 

Пример. f(x) =

Функция не определена в точке х = 0, но имеет в ней конечный предел , т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:

 

 

График этой функции:

 

 

Пример. f(x) = =

 

y

 

 

 

0 x

 

-1

 

 

Эта функция также обозначается sign(x) – знак х. В точке х = 0 функция не определена. Т.к. левый и правый пределы функции различны, то точка разрыва – 1 – го рода. Если доопределить функцию в точке х = 0, положив f(0) = 1, то функция будет непрерывна справа, если положить f(0) = -1, то функция будет непрерывной слева, если положить f(x) равное какому- либо числу, отличному от 1 или –1, то функция не будет непрерывна ни слева, ни справа, но во всех случаях тем не менее будет иметь в точке х = 0 разрыв 1 – го рода. В этом примере точка разрыва 1 – го рода не является устранимой.

 

Таким образом, для того, чтобы точка разрыва 1 – го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.

Глава3. Непрерывные функции

 




Поделиться с друзьями:


Дата добавления: 2015-07-02; Просмотров: 1245; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.