Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вспомогательная искусственная вентиляция легких




Вспомогательную искусственную вентиляцию легких (ВИВЛ) можно охарактеризовать как метод, при котором частота дыхательных циклов аппарата определяется ча­стотой сохраненных дыхательных усилий больного в от­личие от управляемой вентиляции, при которой отсутству­ет спонтанная дыхательная активность больного, а частота дыхательных циклов устанавливается врачом на осно­вании расчетов и исследований. Основным условием про­ведения вспомогательной вентиляции является достижение синхронизации дыхания больного и работы аппарата. Это­го можно достигнуть двумя способами.

Адаптационный способ. При этом способе аппарат ра­ботает в обычном режиме. Параметры работы аппарата (дыхательный объем, частота, отношение продолжительностей вдоха и выдоха) тщательно приспосабливаются к исходным параметрам спонтанного дыхания больного, под­бираются с учетом главным образом его субъективных по­требностей. Ориентируясь на предварительные исследова­ния параметров дыхания больного, обычно устанавливают первоначальную частоту дыхательных циклов аппарата на 1 — 2 больше, чем частота спонтанного дыхания больного, а дыхательный объем аппарата — на 20 — 25% выше, чем собственный дыхательный объем больного в покое. Одно­временно с подбором параметров вентиляции необходимо и определенное «волевое» приспособление дыхания больного к работе аппарата. Важную роль при этом в перио­де привыкания больного играет «дирижирование» вентиля­цией путем подачи команды вдох — выдох, а также не­сильным сжатием грудной клетки больного в такт с рит­мом работы аппарата. Облегчает адаптацию применение клапана дополнительного вдоха, допускающего поступле­ние атмосферного воздуха к больному при несовпадении аппаратного и спонтанного дыхательных циклов. Началь­ный период адаптации предпочтительнее проводить дву­мя — тремя кратковременными сеансами ВИВЛ по 15 — 30 мин, с 10-минутнымн перерывами. Перерывы необ­ходимы для выяснения субъективных ощущений больного, степени дыхательного комфорта и коррекции параметров вентиляции. Такая методика позволяет быстро адаптировать больного к респираторному лечению.

Адаптация достаточна в том случае, когда отсутствует сопротивление вдоху, экскурсии грудной клетки совпадают с фазами искусственного дыхательного цикла, больной зна­ками или мимикой указывает на отсутствие затруднении во время процедуры и на удовлетворительное самочувст­вие. Сохранение небольших собственных дыхательных дви­жений без участия вспомогательных мышц считается до­пустимым.

Для более точной и объективной оценки наличия и пол­ноты адаптации мы использовали запись кривых давления в тройнике аппарата с помощью пневмотахографа. Харак­тер кривых давления во время ВИВЛ зависит от того, являются ли воздушные потоки, обусловленные искусствен­ной вентиляцией и спонтанным дыханием, совпадающими по направлению или встречными. При адаптационном спо­собе ВИВЛ мы выделили 4 типа кривых соответственно 4 степеням адаптации.

I тип — отсутствие адаптации. Кривая отображает рас­хождение спонтанной и искусственной вентиляции по фазам, характеризуется «неорганизованным» рисунком, воз­никновением высоких пиковых давлений из-за наложения вдоха аппарата на выдох пациента (суммирование положительных давлений) (рис. 8, а).

II тип — удовлетворительная адаптация. На рис. 8,6 видно совпадение дыхательных фаз больного и аппарата, однако спонтанный вдох незначительно опережает искус­ственный. Наложение спонтанного и аппаратного вдоха приводит к уплощению кривой но сравнению с такой же кривой, полученной на модели легких (суммирование по­ложительного и отрицательного давлений).

III тип — синхронизация дыхания больного и работы ап­парата. Отмечается полное совпадение на кривых фаз вдо­ха и выдоха больного и аппарата (рис. 8, в).

IV тип — замещение собственного дыхания искусствен­ным. Кривая давления при ВИВЛ практически повторяет кривую, полученную на модели легких (рис. 8,г). Это ста­новится возможным при полном торможении спонтанной дыхательной активности, произвольном выключении боль­ными дыхательных усилий и расслаблении дыхательной мускулатуры. Подобный вариант адаптации, наблюдае­мый нечасто, является по существу управляемой ИВЛ, до­стигаемой «суггестивным» путем.

8. Давление в дыхательных путях при ВИВЛ. Объяснение в тексте.

 

Триггерный способ ВИВЛ. Этот способ осуществляется с помощью специального узла аппарата ИВЛ, предназна­ченного для переключения распределительного устройства на вдох (иногда наоборот) вследствие дыхательного уси­лия больного. До недавнего времени в отечественной литературе это устройство называлось «блоком откликаиия», а ВИВЛ с его помощью — «откликающейся». Однако в по­следнее время в технических документах этот узел назы­вается блоком вспомогательной вентиляции аппарата ИВЛ. В зарубежной литературе этот блок называют триг­гером (англ. Trigger — спусковой крючок), а ВИВЛ с его помощью — триггерной.

Два основных параметра характеризуют работу триггерного блока: чувствительность и инерционность. Чувст­вительность блока определяется наименьшей величиной потока или отрицательного давления, необходимой для срабатывания переключающего устройства респиратора. Триггерный блок, чувствительный к потоку, должен реа­гировать на поток 5 — 10 мл/с, а блок, чувствительный к отрицательному давлению, — на разрежение — 0,25 — 0,5 см вод.ст. Такие величины скорости и разрежения на вдохе способен создавать ослабленный больной. Чувствительность блока должна быть регулируе­мой, чтобы при соответствующих обстоятель­ствах иметь возможность уменьшать ее. Величи­ной, характеризующей инерционность триггерного блока, является так называемое время задержки. Оно измеря­ется временем от момента достижения заданной порого­вой величины чувствительности до начала ответного цик­ла аппарата. Время задержки должно быть так мало, что­бы вспомогательный вдох не приходился на конец спон­танного вдоха и начало выдоха больного. По мнению авторитетных специалистов, время задержки не долж­но превышать 0,05 — 0,1 с [Грузман А.Б. и др., 1974]. Графическое изображение характерных кривых объемной скорости, давления и объема при триггерном способе ВИВЛ приведено на рис. 9.

 

9. Функциональные кривые при тригерном способе ВИВЛ (схема):

TI — длительность вдоха; ТE. — длительность выдоха; tiначало ожидания дыхательного усилия; t2 — начало дыхательного усилия; t3 — момент достижения дыхатель­ным усилием порогового значения (в данном случае — давления); t4 — начало вдоха аппарата; Vtr, Ptr, Vtr — пороговые значения объемной скорости, давления и объема; t4 — t3 задержка срабатывания.

 

При триггерном способе ВИВЛ регулировка параметров вентиляции во многом зависит от типа аппарата.

У аппаратов с переключением по объему (РО-6) уста­навливается требуемая величина дыхательного объема. Частота дыхания определяется дыхательными усилиями больного. Длительность вдоха зависит от установки вели­чины минутной вентиляции и отношения вдох/выдох. Что­бы аппарат был готов «откликнуться» на каждую дыха­тельную попытку больного, нужно, чтобы мех к моменту дыхательной попытки находился в исходном для вдоха по­ложении. Для этого скорость возврата меха, устанавли­ваемая регулятором минутной вентиляции, должна быть достаточно высокой. При этом целесообразно регулятор отношения длительности вдох/выдох поставить в положе­ние 1:1,3; это еще более ускорит возврат меха в фазе выдоха и вместе с тем сделает скорость вдоха более удовле­творительной.

У аппаратов с переключением по давлению (РД-1) ча­стота дыхания и продолжительность вдоха определяются усилиями вдоха и выдоха больного. Врач должен отрегу­лировать два параметра: величину конечного давления вдоха и скорость вдувания газа. В условиях управляемой ИВЛ величина конечного давления вдоха, по достижении которой аппарат переключается на выдох, определяет в данных конкретных условиях величину дыхательного объ­ема. При триггерной же ВИВЛ, если спонтанное дыхание сохранено и, следовательно, продолжительность вдоха за­висит от самого больного, устанавливаемая величина ко­нечного давления вдоха не является определяющей для величины дыхательного объема и представляет собой величину начального сопротивления выдоху, которое должен преодолеть больной усилием выдоха. От установки скоро­сти вдувания зависит, как быстро получит больной тре­буемый ему дыхательный объем и, в конечном итоге, ми­нутный объем вентиляции. В отношении величин конечного давления вдоха и скорости вдувания для больных, нахо­дящихся в сознании, предварительные количественные ре­комендации нецелесообразны: установка этих величин должна подчиняться все тем же требованиям «дыхательно­го комфорта» у конкретных больных.

При проведении триггерного способа ВИВЛ любыми ап­паратами следует помнить о регулировании еще двух параметров: чувствительности триггериого устройства и вре­мени ожидания дыхательной попытки. При установке наи­большей чувствительности необходимы минимальные дыхательные усилия больного, чтобы вызвать вдох аппарата. Однако такая установка может привести к артефактным включениям аппарата, например от сердечного толчка при гипертрофированном сердце. Кроме того, с целью трени­ровки спонтанного дыхания (например, в периоде выхода из длительной управляемой ИВЛ) иногда бывает целесо­образно уменьшить чувствительность триггерного устрой­ства.

Что касается времени ожидания попытки, то регулиров­ка этой величины введена в триггерные блоки для того, чтобы обеспечить переход на управляемый режим венти­ляции через определенный промежуток времени после того, как у больного прекратилось самостоятельное дыхание.

10. Давление в дыхательных путях; а - при перемежающейся принудительной вентиляции без СДППД с включением принудительных дыхательных циклов через каждые 12 с; б — при перемежаю­щейся принудительной вентиляции на фоне СДППД.

 

Исключительно важная для больных в тяжелом, бессозна­тельном состоянии эта мера предосторожности не имеет смысла у больных с более или менее удовлетворительным состоянием и сохраненным сознанием. У таких больных при сеансах ВИВЛ время ожидания попытки должно быть установлено на достаточно большую величину, чтобы не помешать проведению процедуры.

Перемежающаяся принудительная вентиляция (ППВ). В последнее время возник и все более утверждается инте­рес к так называемой перемежающейся принудительной вентиляции легких (intermittent mandatory ventilation ан­глийских авторов, сокращенно IMV). Сущность этого спо­соба состоит в том, что при восстановлении самостоятель­ного дыхания после длительной ИВЛ больной продолжает дышать спонтанно через дыхательный контур аппарата ИВЛ. Спонтанное дыхание больного через аппарат мо­жет осуществляться в обычном режиме — с перепадами давлений вдоха и выдоха вокруг нулевого (атмосферного) давления (рис. 10, а), либо по показаниям — в режиме так называемого спонтанного дыхания под постоянным положительным давлением (СДППД) (см. рис. 10,6).

Для поддержания гарантированного объема вентиляции аппарат периодически включается для проведения одного «принудительного» цикла. Частоту таких включений ре­гулирует врач в зависимости от вентиляционных возмож­ностей больного.

ППВ является в принципе вариантом ИВЛ, что особенно очевидно для синхронизированной ППВ (SIMV), когда «принудительный вдох» аппарата синхронизируется со вдо­хом больного с помощью триггерного блока. При посте­пенном увеличении интервалов между «принудительными» циклами облегчается отвыкание больного от аппарата при длительной ИВЛ, что служит одним из важных показаний к ППВ.

Глава 4

ПРИНЦИПЫ ПОСТРОЕНИЯ АППАРАТОВ ИВЛ:

КЛАССИФИКАЦИЯ, СТРУКТУРНАЯ СХЕМА, ГЕНЕРАТОРЫ ВДОХА И ВЫДОХА, РАЗДЕЛИТЕЛЬНАЯ ЕМКОСТЬ

 

Расширение применения ИВЛ и поиск оптимальных кон­струкций аппаратов привели к их большому разнообра­зию. Сейчас в СССР выпускается или готовится к произ­водству свыше 20 различных аппаратов, известно также не менее 150 зарубежных конструкций. Такое разнообра­зие затрудняет понимание принципиальных особенностей определенной модели, не позволяя эффективно использо­вать ее преимущества и нейтрализовать недостатки. Оно свидетельствует о том, что оптимальные схемы и конструкции еще не созданы, и усложняет разработку, произ­водство и эксплуатацию аппаратуры.

КЛАССИФИКАЦИЯ АППАРАТОВ ИВЛ

 

Хотя многообразные свойства аппаратов не позволяют разработать их единую классификацию, по различным признакам можно выявить характерные черты, определяю­щие несколько групп аппаратов.

Из стандартизированного (см. ГОСТ 17807 — 83) опреде­ления аппарата ИВЛ следует, что периодическое переме­щение газа между внешней средой и внутрилегочным про­странством может быть достигнуто принципиально различными методами. Аппараты ИВЛ наружного (внешнего) действия вентилируют легкие путем воздействия переме­жающегося давления на все тело пациента, за исключени­ем головы, или на часть тела — грудную клетку и (или) область диафрагмы. Как и при самостоятельном дыхании, во время вдоха газ поступает в легкие под действием соз­даваемого в них разрежения, величина которого определя­ется сопротивлением дыхательных путей. Из приведенных на рис. 1,а функциональных характеристик видно, что механика такой ИВЛ идентична механике самостоятельной вентиляции. В зависимости от того, к какой части тела прилагаются колебания давления, аппараты наружного действия можно разделить на следующие типы:

— аппараты для воздействия на все тело — «железные легкие»,

— аппараты для воздействия на грудную клетку — с ки­расой,

— аппараты для воздействия на область диафрагмы — с пневмопоясом,

— аппараты, в которых вентиляция легких достигается путем смещения диафрагмы под действием массы органов, находящихся в брюшной полости, когда тело пациента ка­чают вокруг поперечной оси: так называемая «качающая­ся кровать».

В настоящее время выпуск аппаратов, реализующих на­ружный способ, прекращен, поскольку они малоэффектив­ны, а наиболее эффективные из них — «железные лег­кие» — представляют собой дорогостоящие громоздкие уст­ройства, затрудняющие доступ к телу пациента. В таких аппаратах затруднено управление составом, температурой и влажностью вдыхаемого газа. В этой работе аппараты наружного действия не рассматриваются.

Аппараты ИВЛ внутреннего действия во время вдоха вдувают газ в легкие пациента через верхние дыхательные пути, и развивающееся в легких давление обусловлено не­обходимостью преодолеть эластичное сопротивление лег­ких и грудной клетки, а также сопротивление дыхатель­ных путей. Именно поэтому давление в легких во время этой фазы дыхательного цикла по знаку противоположно давлению при самостоятельном дыхании и значительно превышает его по величине (см. рис. 1,6).

По виду энергии, необходимой для работы аппарата, их можно классифицировать на следующие типы:

— аппараты с пневмоприводом, в которых источником энергии служит сжатый газ, получаемый от внешнего или встроенного источника и используемый как для подачи пациенту, так и для работы системы управления;

— аппараты с электроприводом от внешнего источника энергии;

— аппараты с ручным приводом (аппараты с ножным приводом появлялись, но распространения не получили), в которых используется мускульная энергия оператора;

— аппараты с комбинированным приводом, в которых энергию для вдувания газа получают от внешних источ­ников сжатых газов, а управление аппаратом осуществля­ется от электроэнергии.

Сопоставление аппаратов с различными видами энергии привода приведено в главе 6.

Важным признаком является способ переключения фаздыхательного цикла. Выбор типа переключения, особенно со вдоха на выдох, оказывает глубокое влияние на экс­плуатационные свойства аппаратов. Их можно классифи­цировать следующим образом:

— аппараты с переключением по давлению, где вдох сменяется выдохом вследствие достижения заданного дав­ления в какой-то точке пневмосхемы аппарата, желательно расположенной как можно ближе к дыхательным путям пациента. Поэтому в них можно непосредственно устанав­ливать и поддерживать на заданном уровне этот сравни­тельно второстепенный параметр ИВЛ, а изменение почти любой характеристики аппарат — пациент изменяет перво­начально установленные минутную вентиляцию и дыха­тельный объем;

— аппараты с переключением по объему, где выдох на­ступает вследствие подачи пациенту заданного объема га­за. Здесь соответственно этот объем можно непосредствен­но устанавливать и стабильно поддерживать при измене­нии характеристик системы аппарат — пациент;

— аппараты с переключением по времени, где вдох сме­няется выдохом по истечении заданного интервала вре­мени. В моделях этого типа легко регулировать временные параметры дыхательного цикла, которые стабильно под­держиваются во время работы.

Имеются отдельные аппараты, в которых выдох начи­нается вследствие снижения скорости вдувания газа до за­данной величины. Однако этот метод мало удобен, по­скольку скорость вдувания непосредственно не связана с основными параметрами ИВЛ и поэтому не обеспечива­ется независимая установка и стабильное поддержание этих параметров.

Находят некоторое применение аппараты ИВЛ с пере­ключением фаз дыхательного цикла вручную оператором, воздействующим на специальную кнопку или рычаг.

Аппараты ИВЛ классифицируются также по виду ис­пользуемого дыхательного контура. Существуют модели с реверсивным контуром, применяемые во время ингаляцион­ного наркоза, с неверсивным контуром, с любым дыха­тельным контуром.

Разделяют аппараты ИВЛ на автономные и неавтоном­ные, с автоматическим (с применением замкнутых конту­ров) и неавтоматическим управлением; аппараты с гене­ратором вдоха постоянного или переменного потока.

Определенное влияние на характеристики аппаратов оказывает и их основное назначение. Границы между мо­делями разного назначения достаточно условны, тем не менее специфические особенности присущи моделям, пред­назначенным для длительной реанимации, для ИВЛ во время ингаляционного наркоза, для экстренного примене­ния, для оживления новорожденных, универсального на­значения, специального назначения (для высокочастотной ИВЛ, ИВЛ во время бронхоскопии и т.д.).

Стандартизированные в СССР требования к аппара­там различных групп приведены в табл. 4.

Таблица 4

Пределы регулирования основных параметров аппаратов И ВЛ по ГОСТ 18856 — 81 (группы 1-я, 2-я и 3-я — аппараты для взрослых и детей старше 6 лет, группа 4-я — для детей от одного года до 6 лет, группа 5-я — для новорожденных и детей до одного года)

Наименование параметра Пределы регулирования значений для аппаратов групп
1-й 2-й 3-й 4-й 5-й
Ниж­ний, не более верхний, не менее Ниж­ний, не более верхний, не менее Ниж­ний, не более верхний, не менее Ниж­ний, не более верхний, не менее Ниж­ний, не более верхний, не менее
Минутная вентиляция, л/мин             0,7   -    
Дыхательный объем, л 0,2 1,5 0,3 1,2 0,5 1,0 0,1 0,2 0,01 0,1
Частота дыхания, -мин-1                    
Отношение длительностей вдо­ха и выдоха:  
нижний предел, не более 1: 1,3 1: 1,5
верхний предел, не менее 1: 3,0 1: 2,0
Максимальное рабочее давле­        
ние, кПа 8-10 5-10 3-8 5-10
Максимальное рабочее разре­жение, кПа 1,5 0,8 — 1,5 Пассивный выдох
Потеря давления в линии пас­сивного выдоха, кПа, не бо­ лее 0,2 на постоянном потоке газа 25 л/мин 0,2 на постоянном пото­ке газа 15 л/мин 0,2 на постоянном потоке газа 5 л; мин
                           

 

Примечания: 1. Требования таблицы не распространяются на дополнительные режимы работы аппарата, например вспомогательная вентиляция, искусственный «вздох» и др.

2. Для аппаратов достаточно выполнение требований к тем параметрам, которые регулируются независимо.

3. Для аппаратов 2 — 4-й группы активный выдох необязателен.

4. Нижнее значение минутной вентиляции, нижнее и верхнее значения частоты дыхания для аппаратов 5-й группы стандартом не установлены и должны быть указаны в технических условиях на конкретные типы аппаратов.

СТРУКТУРНАЯ СХЕМА АППАРАТА ИВЛ

 

В схемах каждого аппарата всегда можно выделить основные структурные блоки: источник газа, подаваемого пациенту (генератор вдоха); распределительное устройст­во, задающее требуемые направления движения газа в различных фазах дыхательного цикла; механизм управле­ния распределительным устройством.

Простейшую структурную схему (рис. 11, а) имеют ап­параты с нереверсивным дыхательным контуром. Приме­ром такого аппарата может служить «Пневмат-1», в ко­тором генератором вдоха является инжектор с питанием от сжатого кислорода. Распределительное устройство периодически прерывает поток газа, разделяя его на опреде­ленные порции. Перевод устройства из положения вдоха в положение выдоха и обратно осуществляет пневматиче­ский переключающий механизм, определяющий длитель­ность вдоха и выдоха и, следовательно, частоту дыхания и отношение продолжительное гей вдоха и выдоха. Аппара­ты подобного типа иногда называют «делителями потока».

Примером структурной схемы многофункционального ап­парата может служить схема широко распространенного аппарата РО-6Н (рис. 11,6). Для получения реверсивного и нереверсивного дыхательных контуров в этой модели при­менена разделительная емкость, с помощью которой газ, циркулирующий в дыхательном контуре, отделен от газа, используемого в линии привода. Распределительное уст­ройство коммутирует потоки газа в линии привода и в дыхательном контуре. Управляется оно механизмом, задающим определенный ход мехов, т.е. дыхательный объ­ем. Генератором вдоха является воздуходувка, работаю­щая от электродвигателя. В схеме предусмотрены устрой­ства для нагрева, увлажнения и очистки вдыхаемого газа, а также средства для измерения характеристик режима ИВЛ.

 

11. Структурная схема аппарата ИВЛ:

а — простого («Пневмат-1»); б — многофункционального (PO-6Н). 1 — пациент; 2 — нереверсивный клапан; 3 — распределительное устройство; 4 — переключаю­щий механизм; 5 — генератор вдоха; 6 — ввод сжатого газа; 7 — увлажнитель; 8 — волюметр: 9 — наркозный блок; 10 — разделительная емкость; 11 — регуля­тор минутной вентиляции.




Поделиться с друзьями:


Дата добавления: 2015-06-27; Просмотров: 3536; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.042 сек.