КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Модели представления знаний. В интеллектуальных системах используются четыре основных типа моделей знаний:
В интеллектуальных системах используются четыре основных типа моделей знаний: 1. Логические модели. В основе моделей такого типа лежит формальная система, задаваемая четверкой вида M = <T, S, A, B>. Множество T есть множество базовых элементов, например слов из некоторого словаря, или деталей из некоторого набора. Для множества T существует некоторый способ определения принадлежности или непринадлежности произвольного элемента к данному множеству. Процедура такой проверки может быть любой, но она должна давать ответ на вопрос, является ли x элементом множества T за конечное число шагов. Обозначим эту процедуру P(T). Множество S есть множество синтаксических правил. С их помощью из элементов T образуют синтаксически правильные совокупности. Например, из слов словаря строятся синтаксически правильные фразы, а из деталей собираются конструкции. Существует некоторая процедура P(S), с помощью которой за конечное число шагов можно получить ответ на вопрос, является ли совокупность X синтаксически правильной. В множестве синтаксически правильных совокупностей выделяется некоторое подмножество A. Элементы A называются аксиомами. Как и для других составляющих формальной системы, должна существовать процедура P(A), с помощью которой для любой синтаксически правильной совокупности можно получить ответ на вопрос о принадлежности ее к множеству A. Множество B есть множество правил вывода. Применяя их к элементам A, можно получать новые синтаксически правильные совокупности, к которым снова можно применять правила из B. Так формируется множество выводимых в данной формальной системе совокупностей. Если имеется процедура P(B), с помощью которой можно определить для любой синтаксически правильной совокупности, является ли она выводимой, то соответствующая формальная система называется разрешимой. Это показывает, что именно правила вывода являются наиболее сложной составляющей формальной системы. Для знаний, входящих в базу знаний, можно считать, что множество A образуют все информационные единицы, которые введены в базу знаний извне, а с помощью правил вывода из них выводятся новые производные знания. Другими словами, формальная система представляет собой генератор порождения новых знаний, образующих множество выводимых в данной системе знаний. Это свойство логических моделей позволяет хранить в базе лишь те знания, которые образуют множество A, а все остальные знания получать из них по правилам вывода. 2. Сетевые модели. Сетевые модели формально можно описать в виде H = <I, C1, C2,…, Cn, G). Здесь I есть множество информационных единиц; C1, C2,…, Cn - множество типов связей между ними. Отображение G задает связи из заданного набора типов связей между информационными единицами, входящими в I. В зависимости от типов связей, используемых в модели, различают классифицирующие сети, функциональные сети и сценарии. В классифицирующих сетях используются отношения структуризации. Такие сети позволяют в базах вводить иерархические отношения между информационными единицами. Функциональные сети характеризуются наличием функциональных отношений. Их часто называют вычислительными моделями, так как они позволяют описывать процедуры «вычислений» одних информационных единиц через другие. В сценариях используются каузальные отношения, а также отношения типа «средство – результат». Если в сетевой модели допускаются связи различного типа, то ее называют семантической сетью. 3.Продукционные модели. В моделях этого типа используются некоторые элементы логических и сетевых моделей. Из логических моделей заимствована идея правил вывода, которые здесь называются продукциями, а из сетевых моделей – описание знаний в виде семантической сети. В результате применения правил вывода к фрагментам сетевого описания происходит трансформация семантической сети за счет смены ее фрагментов, наращивания сети и исключения из нее ненужных фрагментов. Таким образом, в продукционных моделях процедурная информация явно выделена и описывается иными средствами, чем декларативная информация. Вместо логического вывода, характерного для логических моделей, в продукционных моделях появляется вывод на знаниях. 4.Фреймовые модели. В отличие от моделей других типов во фреймовых моделях фиксируется жесткая структура информационных единиц, которая называется протофреймом. В общем виде она выглядит следующим образом: (Имя фрейма: Имя слота 1 (значение слота 1) Имя слота 2 (значение слота 2) .............. Имя слота К (значение слота К)). Значением слота может быть все, что угодно: числа, математические соотношения, тексты на естественном языке, программы, правила вывода, ссылки на другие слоты данного фрейма или других фреймов. В качестве значения слота может выступать набор слотов более низкого уровня, что позволяет реализовать во фреймовых представлениях «принцип матрешки». При конкретизации фрейма ему и слотам присваиваются имена и происходит заполнение слотов. Таким образом, из протофреймов получаются фреймы-экземпляры. Переход от исходного протофрейма к фрейму-экземпляру может быть многошаговым, за счет постепенного уточнения значений слотов. Связи между фреймами задаются значениями специального слота с именем «Связь». Некоторые специалисты по ИС не выделяют фреймовые модели в отдельный класс, так как в ней объединены все основные особенности моделей остальных типов.
Дата добавления: 2015-06-27; Просмотров: 519; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |