Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Цели и задачи теории алгоритмов

 

Обобщая результаты различных разделов теории алгоритмов можно выделить следующие цели и соотнесенные с ними задачи, решаемые в теории алгоритмов:

· формализация понятия «алгоритм» и исследование формальных алгоритмических систем;

· формальное доказательство алгоритмической неразрешимости ряда задач;*

· классификация задач, определение и исследование сложностных классов;

· асимптотический анализ сложности алгоритмов;

· исследование и анализ рекурсивных алгоритмов;

· получение явных функций трудоемкости в целях сравнительного анализа алгоритмов;

· разработка критериев сравнительной оценки качества алгоритмов.

 

 

Разделы современной теории алгоритмов

 

Рассмотрим одну из фундаментальных работ по теории алгоритмов.

Строгие определения понятия «алгоритм» связаны с введением специальных математических конструкций – формальных моделей вычислений. Одной из таких моделей является машина Тьюринга.

В 1936 г. Аланом Тьюрингом для уточнения понятия алгоритма был предложен абстрактный универсальный исполнитель. Его абстрактность заключается в том, что он представляет собой логическую вычислительную конструкцию, а не реальную вычислительную машину. Термин «универсальный исполнитель» говорит о том, что данный исполнитель может имитировать любой другой исполнитель. Например, операции, которые выполняют реальные вычислительные машины можно имитировать на универсальном исполнителе. В последствие, придуманная Тьюрингом вычислительная конструкция была названа машиной Тьюринга.

Кроме того, предполагается, что универсальный исполнитель должен уметь доказывать существование или отсутствие алгоритма для той или иной задачи.

Машина Тьюринга состоит из бесконечной в обе стороны ленты, разделенной на ячейки. Лента может протягиваться на одну клетку вправо или влево под управлением автомата (головки), которая является неподвижной.
Программы для машин Тьюринга записываются в виде таблицы, где первые столбец и строка содержат буквы внешнего алфавита и возможные внутренние состояния автомата (внутренний алфавит). Содержимое таблицы представляет собой команды для машины Тьюринга. Буква, которую считывает головка в ячейке (над которой она находится в данный момент), и внутренне состояние головки определяют, какую команду нужно выполнить. Команда определяется пересечением символов внешнего и внутреннего алфавитов в таблице.

Чтобы задать конкретную машину Тьюринга, требуется описать для нее следующие составляющие:

· Внешний алфавит. Конечное множество (например, А), элементы которого называются буквами (символами). Одна из букв этого алфавита (например, а0) должна представлять собой пустой символ.

· Внутренний алфавит. Конечное множество состояний головки (автомата). Одно из состояний (например, q1) должно быть начальным (запускающим программу). Еще одно из состояний (q0) должно быть конечным (завершающим программу) – состояние останова.

· Таблица переходов. Описание поведения автомата (головки) в зависимости от состояния и считанного символа.

Автомат машины Тьюринга в процессе своей работы может выполнять следующие действия:

· Записывать символ внешнего алфавита в ячейку (в том числе и пустой), заменяя находившийся в ней (в том числе и пустой).

· Передвигаться на одну ячейку влево или вправо.

· Менять свое внутреннее состояние.

Одна команда для машины Тьюринга как раз и представляет собой конкретную комбинацию этих трех составляющих: указаний, какой символ записать в ячейку (над которой стоит автомат), куда передвинуться и в какое состояние перейти. Хотя команда может содержать и не все составляющие (например, не менять символ, не передвигаться или не менять внутреннего состояния).

<== предыдущая лекция | следующая лекция ==>
Теория алгоритмов | Пример работы машины Тьюринга
Поделиться с друзьями:


Дата добавления: 2014-01-03; Просмотров: 2171; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.