Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Средняя геометрическая величина




Средняя квадратическая величина

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратической средней величиной (х^). Ее формула такова:

Заменяя разные значения длины сторон на среднюю, мы, очевидно, должны исходить из сохранения общей площади всех участков. Арифметическая средняя величина (200 + 400): 2 =300 м не удовлетворяет этому условию, так как общая площадь 2 участков со стороной 300 м была бы равна: 2∙(300 м)2 = 180 000 м2. В то же время площадь исходных двух участков равна: (200 м)2 + (400 м)2 = 200 000 м. Правильный ответ дает квадратическая средняя:

 

Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменным произведение индивидуальных величин, то следует применить геометрическую среднюю величину. Ее формула такова:

руб.

Десять тысяч — не миллион, и не сотня. Это, нечто среднее между ними.

 

5.2.5

Понятие степенной средней.

Соотношение между формами средних величин

Все рассмотренные выше виды средних величин принадлежат к общему типу степенных средних. Различаются они лишь показателем. Степенная средняя степени k есть корень k -й степени из частного от деления суммы индивидуальных значений признака в k- й степени на число индивидуальных значений:

При k = 1 получаем арифметическую среднюю, при k -2 - квадрагическую, при k = 3 - кубическую, при k = 0 - геометрическую, при k = -1 — гармоническую среднюю. Чем выше показатель степени k, тем больше значение средней величины (если индивидуальные значения признака варьируют). Если все исходные значения признака равны, то и все средние равны этой константе. Итак, имеем следующее соотношение, которое называется правилом мажорантности средних:

 

6. Вариацию можно определить как количественное различие значений одного и того же признака у отдельных единиц совокупности.

 

Термин «вариация» имеет латинское происхождение - variatio, что означает различие, изменение, колеблемость.

 

 

Для измерения вариации признака используют как абсолютные, так и относительные показатели.

К абсолютным показателям вариации относят: размах вариации, среднее линейное отклонение, среднее квадратическое отклонение, дисперсию.

К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение и др.

 

 

Размах вариации R. Это самый доступный по простоте расчета абсолютный показатель, который определяется как разность между самым большим и самым малым значениями признака у единиц данной совокупности:

Размах вариации (размах колебаний) - важный показатель колеблемости признака, но он дает возможность увидеть только крайние отклонения, что ограничивает область его применения. Для более точной характеристики вариации признака на основе учета его колеблемости используются другие показатели.

 

Среднее линейное отклонение d, которое вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности. Эта величина определяется как средняя арифметическая из абсолютных значений отклонений от средней. Так как сумма отклонений значений признака от средней величины равна нулю, то все отклонения берутся по модулю. Формула среднего линейного отклонения (простая):
Формула среднего линейного отклонения (взвешенная):

Формулы дисперсии взвешенной и простой :

 

Расчет дисперсии можно упростить. Для этого используется способ отсчета от условного нуля (способ моментов), если имеют место равные интервалы в вариационном ряду.

 

 

При использовании показателя среднего линейного отклонения возникают определенные неудобства, связанные с тем, что приходится иметь дело не только с положительными, но и с отрицательными величинами, что побудило искать другие способы оценки вариации, чтобы иметь дело только с положительными величинами. Таким способом стало возведение всех отклонений во вторую степень. Обобщающие показатели, найденные с использованием вторых степеней отклонений, получили очень широкое распространение. К таким показателям относятся среднее квадратическое отклонение ϭ и среднее квадратическое отклонение в квадрате ϭ², которое называют дисперсией.

Средняя квадратическая простая:

Средняя квадратическая взвешенная:

 

 

среднее квартильное расстояние .

относительное квартильное расстояние:

 

Показатели вариации

 

Дисперсия в более узком смысле слова представляет собой среднее арифметическое квадратов отклонений элементов ряда от его средней арифметической. Квадратный корень дисперсии называется средним квадратическим отклонением.

 

Свойство 1. Дисперсия постоянной величины равна нулю.
Свойство 2. Уменьшение всех значений признака на одну и ту же величину A не меняет величины дисперсии . Значит, средний квадрат отклонений можно вычислить не по заданным значениям признака, а по отклонениям их от какого-либо постоянного числа.
Свойство 3. Уменьшение всех значений признака в K раз уменьшает дисперсию в K2раз, а среднее квадратическое отклонение в K раз . Значит, все значения признака можно разделить на какое-то постоянное число, например, на величину интервала ряда, исчислить среднее квадратическое отклонение, а затем умножить его на постоянное число: .

Свойство 4. Если вычислить средний квадрат отклонений от любой величины A, в той или иной степени отличающейся от средней арифметической (), то он всегда будет больше среднего квадрата отклонений, вычисленного от средней арифметической . Средний квадрат отклонений при этом будет больше на величину (– A)2:
.
Значит, дисперсия от средней величины всегда меньше дисперсий, вычисленных от любых других величин, т.е. она имеет свойство минимальности.

 

На этих математических свойствах дисперсии основываются способы, которые позволяют упростить ее вычисление. Например, расчет дисперсии по способу моментов или способу отсчета от условного нуля применяется в вариационных рядах с равными интервалами. Расчет производится по формуле:
,
где K – ширина интервала; A – условный нуль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
– момент второго порядка.
Задача 2.

Используя свойства дисперсии и сначала уменьшив все варианты совокупности на величину А, а затем разделив на величину интервала h, получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:
,
где – дисперсия, исчисленная по способу моментов;
h – величина интервала вариационного ряда;
– новые (преобразованные) значения вариант;
А– постоянная величина, в качестве которой используют середину интервала, обладающего наибольшей частотой; либо вариант, имеющий наибольшую частоту;
– квадрат момента первого порядка;
– момент второго порядка.
Выполним расчет дисперсии способом моментов на основе данных о сменной выработке рабочих бригады.

Расчет дисперсии по способу моментов

Группы рабочих по выработке, шт. Число рабочих, Середина интервала, Расчетные значения
140-160     -2 -20  
160-180     -1 -15  
180-200   190      
200-220          
220-240          
Итого   - -    

 

Порядок расчета:

1. определяем постоянное число А, это варианта с наибольшей частотой: А=190;

2. определяем

3. рассчитываем и ;

4. определяем моменты 1-го и 2-го порядка:


5. рассчитываем дисперсию:

 

Коэффициент осцилляции

Относительное линейное отклонение (линейный коэффициент варианции)

Коэффициент вариации (относительное отклонение)

Сравнение вариации нескольких совокупностей по одному и тому же признаку, а тем более по различным признакам с помощью абсолютных показателей не представляется возможным. В этих случаях для сравнительной оценки степени различия строят относительные показатели вариации. Они вычисляются как отношения абсолютных показателей вариации к средней:

Коэффициент осцилляции
Относительное линейное отклонение
Коэффициент вариации

 

относительное квартальное расстояние d:

где q - среднее квартильное расстояние.

 

 




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 520; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.021 сек.