Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Вывод является видом логического анализа, направленного на получение общих заключений о всей совокупности на основе наблюдений за малой группой единиц данной совокупности


Далее проводится статистический анализ, т.е. определяются средние величины, частоты, корреляционные и регрессионные соотношения, осуществляется анализ трендов.

Анализ данных и подготовка заключительного отчета

 

Анализ данных начинается с перевода «сырых» данных в осмысленную информацию и включает их введение в компьютер, проверку на предмет ошибок, кодирование, представление в матричной форме (табулирование). Обычно закодированные исходные данные представляются в виде матрицы, столбцы которой содержат ответы на различные вопросы анкеты, а ряды – респондентов или изучаемые ситуации. Все это называется преобразованием исходных данных.

Выделяют пять основных видов статистического анализа, используемых при проведении маркетинговых исследований: дескриптивный анализ, выводной анализ, анализ различий, анализ связей и предсказательный анализ. Иногда эти вицы анализа используются по отдельности, иногда – совместно.

В основе дескриптивного анализа лежит использование двух групп статистических мер. Первая – включает меры «центральной тенденции», или меры, которые описывают типичного респондента или типичный ответ (средняя величина, мода, медиана). Вторая – включает меры вариации, или меры, описывающие степень схожести или несхожести респондентов или ответов с «типичными» респондентами или ответами (распределение частот, размах вариации и среднее квадратическое отклонение).

Существуют и другие описательные меры, например, меры асимметрии (насколько найденные кривые распределения отличаются от нормальных кривых распределения). Однако они используются не столь часто, как вышеупомянутые, и не представляют особого интереса для заказчика.

Более подробную информацию по данному разделу можно получить из книг по математической статистике, например [6], [8].

Анализ, в основе которого лежит использование статистических процедур (например, проверка гипотез) с целью обобщения полученных результатов на всю совокупность, называется выводным анализом.

Выводы делаются на основе анализа малого числа фактов. Например, если два ваших товарища, имеющие одну и ту же марку автомобиля, жалуются на его качество, то вы можете сделать вывод о низком качестве данной марки автомобиля в целом.



Статистический же вывод основан на статистическом анализе результатов выборочных исследований и направлен на оценку параметров совокупности в целом. В данном случае результаты выборочных исследований являются только отправной точкой для получения общих выводов.

Например, автомобилестроительная компания провела два независимых исследования с целью определения степени удовлетворенности потребителей своими автомобилями. Первая выборка включала 100 потребителей, купивших данную модель в течение последних шести месяцев. Вторая выборка включала 1000 потребителей. В ходе телефонного интервьюирования респонденты отвечали на вопрос; «Удовлетворены вы или не удовлетворены купленной вами моделью автомобиля?» Первый опрос выявил 30% неудовлетворенных, второй – 35%.

Поскольку существуют ошибки выборки и в первом и во втором случаях, то можно сделать следующий вывод. Для первого случая: около 30% опрошенных выразили неудовлетворенность купленной моделью автомобиля. Для второго случая: около 35% опрошенных выразили неудовлетворенность купленной моделью автомобиля. Какой же общий вывод можно сделать в данном случае? Как избавиться от термина «около»? Для этого введем показатель ошибки: 30% + х% и 35% ± у% и сравним х и у. Используя логический анализ, можно сделать вывод, что большая выборка содержит меньшую ошибку и что на ее основе можно сделать более правильные выводы о мнении всей совокупности потребителей. Видно, что решающим фактором для получения правильных выводов является размер выборки. Данный показатель присутствует во всех формулах, определяющих содержание различных методов статистического вывода.

Анализ различий используется для сравнения результатов исследования двух групп (двух рыночных сегментов) с целью определения степени реального различия в их поведении, в реакции на одну и ту же рекламу и т.п.

Проверка существенности различий заключается в сопоставлении ответов на один и тот же вопрос, полученных для двух или более независимых групп респондентов. Кроме того, в ряде случаев представляет интерес сравнение ответов на два или более независимых вопросов для одной и той же выборки.

Примером первого случая может служить изучение вопроса: что предпочитают пить по утрам жители определенного региона – кофе или чай? Первоначально было опрошено на основе формирования случайной выборки 100 респондентов, 60% которых отдают предпочтение кофе; через год исследование было повторено, и только 40% из 300 опрошенных человек высказались за кофе. Как можно сопоставить результаты этих двух исследований? Прямым арифметическим путем сравнивать 40 и 60% нельзя из-за разных ошибок выборок. Хотя в случае больших различий в цифрах, скажем, 20 и 80%, легче сделать вывод об изменении вкусов в пользу кофе. Однако если есть уверенность, что эта большая разница обусловлена прежде всего тем, что в первом случае использовалась очень малая выборка, то такой вывод может оказаться сомнительным. Таким образом, при проведении подобного сравнения в расчет необходимо принять два критических фактора: степень существенности различий между величинами параметра для двух выборок и средние квадратические ошибки двух выборок, определяемые их объемами.

<== предыдущая лекция | следующая лекция ==>
Организация и проведение сбора данных | Основная часть отчета состоит из введения, характеристики методологии исследования, обсуждения полученных результатов, констатации ограничений, а также выводов и рекомендаций

Дата добавления: 2014-01-04; Просмотров: 435; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.004 сек.