Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Хромосомная теория наследственности. Сцепленное наследование

Сущность хромосомной теории наследственности. В 1902–1903 гг. американский цитолог У. Сеттон и немецкий цитолог и эмбриолог Т. Бовери независимо друг от друга высказали предположение, что гены расположены в хромосомах. Однако экспериментальное доказательство локализации конкретных генов в конкретных хромосомах было получено только в 1910 г. американским генетиком Т. Морганом, который в последующие годы (1911 – 1926) обосновал хромосомную теорию наследственности. Согласно этой теории, передача наследственной информации связана с хромосомами, в которых линейно, в определенной последовательности локализованы гены. Таким образом, именно хромосомы представляют собой материальную основу наследственности.

Сцепленное наследование. Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов, как правило, значительно превышает количество хромосом. Например, у кукурузы изучено более 500, у мухи дрозофилы – более 1000, а у человека – около 2000[VV197] генов, тогда как хромосом у них 10, 4 и 23 пары соответственно. Это дало основание предположить, что в каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.

Совместное наследование генов Т. Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному набору хромосом, поскольку каждую группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены[VV198].

Наследование сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигибрид образует четыре типа гамет (, Ав, а В, ав) в равных количествах, то такой же дигибрид образует только два типа гамет: АВ и ав тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.

Было установлено, однако, что кроме этих гамет (АВ и ав) возникают и другие – Ав и аВ – с новыми комбинациями генов. Причиной возникновения новых гамет является обмен участками гомологичных хромосом, или кроссинговер.

Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом (рис.). В это время части двух хромосом могут перекрещиваться и обмениваться своими участками (генами), в результате чего возникают хромосомы с иными комбинациями генов. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных, или рекомбинантных.

Рассмотрим один из первых экспериментов Т. Моргана[VV199] по изучению сцепленного наследования. При скрещивании дрозофил, различающихся по двум парам альтернативных признаков (серых с нормальными крыльями и черных с зачаточными крыльями), были получены дигетерозиготные по этим генам особи. Все мухи в соответствии с законом единообразия гибридов первого поколения были серыми с нормальными крыльями.

Далее было проведено анализирующее скрещивание – дигетерозиготную самку скрестили с гомозиготным по обоим рецессивным генам самцом (черное тело и зачаточные крылья). Если бы две пары аллельных генов, определяющих указанные альтернативные признаки, располагались в разных хромосомах, то во втором поколении при анализирующем скрещивании можно было бы ожидать четыре разных фенотипа в равном соотношении: серое тело, нормальные крылья; серое тело, зачаточные крылья; черное тело, нормальные крылья; черное тело, зачаточные крылья.

На самом же деле в результате такого скрещивания наблюдается преимущественно два класса: серые мухи с нормальными крыльями и черные мухи с зачаточными крыльями (на их долю приходится 83%); два других класса – серые мухи с зачаточными крыльями и черные мухи с нормальными крыльями были в небольшом количестве (17%).

Полученный результат свидетельствует о тесной связи между генами, определяющими окраску тела и длину крыльев, что может быть только при нахождении обоих этих генов в одной хромосоме.

Причиной появления небольшого количества мух с новыми сочетаниями признаков является кроссинговер, который приводит к новому рекомбинантному сочетанию аллелей генов в гомологичных хромосомах. Эти обмены происходят с вероятностью 17% и в итоге дают два класса рекомбинантов с равной вероятностью – по 8,5%.

Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, зависит от расстояния между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены.

Расстояние между генами характеризует силу сцепления и выражается в морганидах (в честь Т. Моргана) или в процентах рекомбинации (кроссинговера). Морганида – это генетическое расстояние, на котором кроссинговер происходит с вероятностью 1%.

Биологическое значение кроссинговера чрезвычайно велико. Генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повысить наследственную изменчивость, которая дает широкие возможности адаптации организмов в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.

Генетические карты. Сцепление генов, локализованных в одной хромосоме, не бывает абсолютным. Кроссинговер, происходящий в процессе мейоза между гомологичными хромосомами, приводит к рекомбинации (перераспределению) генов. Т. Морган и его сотрудники К. Бриджес, А. Стертевант и Г. Меллер экспериментально показали, что знание явлений сцепления и кроссинговера позволяет не только установить группу сцепления генов, но и построить генетические карты хромосом, на которых указаны порядок расположения генов в хромосоме и относительные расстояния между ними.

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Генетические карты составляются для каждой пары гомологичных хромосом.

Возможность такого картирования основана на постоянстве процента кроссинговера между определенными генами. Если известно взаимное расположение генов на в хромосоме (их порядок и расстояние между ними), то его можно изобразить в виде схемы (рис.).

Генетические карты хромосом составлены для многих организмов: насекомых (дрозофила, комар, таракан и др.), грибов (дрожжи, аспергилл), многих протистов, бактерий и вирусов.

Наличие генетической карты свидетельствует о высокой степени изученности того или иного вида организма и представляет большой научный интерес. Такой организм является прекрасным объектом для проведения дальнейших экспериментальных работ, имеющих не только научное, но и практическое значение. В частности, знание генетических карт позволяет планировать работы по получению организмов с определенными сочетаниями признаков, что теперь широко используется в селекционной практике. Так, создание штаммов микроорганизмов[VV200], способных синтезировать необходимые для фармакологии и сельского хозяйства белки, гормоны и другие сложные органические вещества, возможно только на основе методов генной инженерии, которые, в свою очередь, базируются на знании генетических карт соответствующих микроорганизмов.

Генетические карты человека [VV201] также могут оказаться полезными в развитии здравоохранения и медицины. Знания о локализации гена на[VV202] определенной хромосоме используются при диагностике ряда тяжелых наследственных заболеваний человека.

Основные положения хромосомной теории наследственности. Анализ явлений сцепленного наследования, кроссинговера, сравнение генетической и цитологической[VV203] [VV204] карт позволяют сформулировать основные положения хромосомной теории наследственности:

1. Гены локализованы в хромосомах.

2. Гены расположены в хромосоме линейно.

3. Гены локализованы в одной хромосоме, наследуются вместе и образуют группу сцепления. Число групп сцепления равно гаплоидному набору хромосом.

4. Сцепление между генами, локализованными в одной хромосоме, неполное, между ними может происходить кроссинговер. Частота кроссинговера служит мерой расстояния между генами, расположенными в одной хромосоме.

1. Что такое группа сцепления? Чему равно количество групп сцепления в клетках разных организмов? 2. Какие факты, полученные при изучении сцепления и кроссинговера между генами, подтверждают хромосомную теорию наследственности? 3. Что такое генетические карты хромосом и каковы перспективы их использования? 4. Каковы основные положения хромосом ной теории наследственности?

 

<== предыдущая лекция | следующая лекция ==>
Взаимодействие аллельных генов | Генетика пола
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 2067; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.