Студопедия

КАТЕГОРИИ:



Мы поможем в написании ваших работ!

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Мы поможем в написании ваших работ!

Асимптоты графика функции


 

При исследовании поведения функции на бесконечности, т. е. при +¥ и при –¥, или вблизи точек разрыва второго рода часто оказывается, что расстояния между точками графика функции и точками некоторой прямой с теми же абсциссами сколь угодно малы. Такую прямую называют асимптотой графика.

 

Различают асимптоты вертикальные (т. е. параллельные оси орди­нат) и наклонные. Частным случаем наклонной асимптоты является горизонтальная асимптота.

 

Прямая называется вертикальной асимптотой графика функции , если хотя бы один из односторонних пределов в точке равен бесконечности, т. е. ¥ или ¥.

 

Очевидно, что непрерывные на функции вертикальных асимптот не имеют; такие асимптоты существуют только в точках разрыва второго рода функции . Следовательно, для отыскания верти­кальных асимптот графика функции надо определить те значения , при которых хотя бы один из односторонних пределов функции бесконечен.

Прямая называется наклонной (если — гори­зонтальной) асимптотой графика функции при +¥ ( –¥), если функцию можно представить в виде , где при +¥ ( –¥).

Теорема.Для того чтобы график функции имел на­клонную асимптоту , необходимо и достаточно, чтобы су­ществовали конечные пределы: , .

<== предыдущая лекция | следующая лекция ==>
Точки перегиба функции | Доказательство. Необходимость. Предположим, что — наклонная асимптота графика функции

Дата добавления: 2014-01-04; Просмотров: 319; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.007 сек.