Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Первое начало термодинамики для изопроцессов

Трудности классической теории теплоемкости.

Согласно формулам (4.3.17-4.3.18), теплоемкость идеального газа должна быть числом кратным R/2 и не зависеть от температуры. Однако эксперимент показывает, что достаточно хорошее совпадение экспериментальных данных с теоретическими выводами наблюдается лишь в случае одноатомных газов. Для многоатомных газов теплоемкость оказывается функцией температуры.

 


Рис. 4.3.5. Экспериментальная зависимость С v от для двухатомных газов

 

Из рисунка 4.3.5. видно, что теплоемкость двухатомных молекул ступенчато растет с ростом температуры, как если бы степени свободы молекулы «включались» при разных температурах. В широком диапазоне температур (от нескольких кельвин до тысяч кельвин) теплоемкость соответствует уравнению - молекула ведет себя, как молекула с жесткой связью. Значение теплоемкости для большинства газов нельзя достичь экспериментально, так как при столь высоких температурах происходит диссоциация молекул - молекулы распадаются на атомы.

Объяснить такую температурную зависимость теплоемкости газов можно лишь на основе квантовых представлений. В соответствии с этими представлениями, энергия вращательного и колебательного движений может принимать строго определенный, причем дискретный набор значений. Для того, чтобы молекула начала вращаться, или для того, чтобы возникли колебания ее атомов, молекуле необходимо сообщить энергию, превышающую, соответственно, значение или . Такая энергия может быть получена молекулой при столкновении с другой молекулой, если кинетическая энергия последней достаточно велика. Кинетическая энергия молекулы, следовательно, для возникновения вращения необходимо, чтобы , для возникновения колебаний - . Значения и для различных газов приведены в таблице 4.2.1.

Таблица 4.3.1.

газ  
О2   2,1
СО   2,8
N2   2,9

 

Конечно, при любой температуре газа в нем есть молекулы с достаточно высокими энергиями. Но для того, чтобы теплоемкость приняла значение или , во вращательном и колебательном движениях должны участвовать большинство молекул. Поэтому реальные значения температур, при которых теплоемкость достигает соответствующих значений, превышают те, что приведены в табл. 4.3.1.

Таким образом, температурная зависимость теплоемкости газов – это проявление квантовых законов движения и взаимодействия молекул.

<== предыдущая лекция | следующая лекция ==>
Теплоемкость в других изопроцессах | Адиабатический (изэнтропический) процесс
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 485; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.