Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Полимеров

Осмотическое давление и вязкость растворов

Наличие в растворах высокомолекулярных соединений вытянутых гибких макромолекул влияет на такие свойства растворов, как осмотическое давление и вязкость.

Осмотическое давление растворов низкомолекулярных веществ подчиняется закону Вант-Гоффа, который может быть записан в такой форме:

где – массовая концентрация раствора;

- масса одного моля растворенного вещества.

 

Уравнение для осмотического давления растворов высокомолекулярных соединений содержит дополнительный член, учитывающий взаимодействие гибких макромолекул в растворе друг с другом и с растворителем:

где – постоянная, зависящая от природы растворителя и растворенного вещества.

 

Разделив правую и левую часть уравнения на , получим:

Графическая зависимость величины от имеет вид прямой, не проходящей через начало координат (рис. 8.2). Отрезок, отсекаемый этой прямой на оси ординат, равен . На изучении зависимости осмотического давления от концентрации раствора основан один из самых распространенных методов определения молекулярной массы высокомолекулярных соединений. По этому методу измеряют осмотическое давление раствора полимера при нескольких массовых концентрациях, строят графическую зависимость от , по графику находят и рассчитывают . Определяемая молекулярная масса полимера будет средней величиной.

По вязкости растворы высокомолекулярных веществ резко отличаются от растворов низкомолекулярных веществ и золей. При одной и той же концентрации вязкость растворов полимеров значительно больше вязкости растворов низкомолекулярных веществ, и, с увеличением концентрации, она быстро возрастает (рис. 8.3).

 

 

 

Рис. 8.2. Зависимость от концентрации раствора

полимера.

 

 

 

Рис. 8.3. Зависимость вязкости раствора от его

концентрации:

1 - для раствора низкомолекулярного вещества;

2 - для золя; 3 - для раствора полимера.

 

Такая высокая вязкость растворов высокомолекулярных соединений, даже при низкой концентрации, объясняется наличием в системе длинных гибких макромолекул. Вязкость жидкости можно определить как сопротивление жидкости передвижению одного ее слоя относительно другого. Громадные, вытянутые и гибкие макромолекулы увеличивают силу трения между слоями, т.е. увеличивают вязкость.

Для характеристики вязкости очень разбавленных растворов полимеров, в которых макромолекулы не взаимодействуют друг с другом, Штаудингером предложено следующее уравнение:

где – вязкость раствора и растворителя соответственно;

- удельная вязкость раствора;

- константа, имеющая определенное значение для каждого полимергомологического ряда. Константу К определяют, измеряя молекулярную массу наиболее низкомолекулярных членов данного полимергомологического ряда каким-нибудь другим независимым методом, например, криоскопическим;

- молекулярная масса полимера;

- концентрация раствора, выраженная в «основных молях» на литр. «Основной моль» - число граммов полимера, равное молекулярной массе мономера, из которого построена макромолекула.

 

Согласно уравнению Штаудингера вязкость раствора прямо пропорциональна молекулярной массе растворенного полимера и концентрации раствора. На этой зависимости основан один из методов определения молекулярной массы полимеров.

Вязкость раствора полимера зависит от природы растворителя.

Чем лучше полимер растворяется в данном растворителе, тем более вытянуты макромолекулы и тем больше вязкость раствора.

С увеличением концентрации вязкость растворов полимеров возрастает непропорционально, и течение концентрированных растворов уже не подчиняется законам Ньютона и Пуазейля. Это проявляется в том, что вязкость этих растворов не является постоянной, а уменьшается с увеличением скорости течения растворов.

При увеличении скорости течения разбавленных растворов полимеров гибкие макромолекулы распрямляются и ориентируются по направлению течения. В результате снижается гидродинамическое сопротивление движущейся жидкости и уменьшается вязкость раствора.

В растворах достаточно высокой концентрации появляются ассоциаты макромолекул, также имеющие вытянутую форму. Эти ассоциаты и макромолекулы, взаимодействуя друг с другом, могут образовывать пространственные структуры, затрудняющие течение. При увеличении скорости течения эти структуры разрушаются и вязкость растворов полимеров снижается. Разрушение сравнительно непрочных полимерных структур можно вызвать и чисто механическим путем – встряхиванием, перемешиванием.

Увеличение концентрации полимера в растворе может привести к образованию настолько прочной структуры, что раствор потеряет текучесть, т. е. превратится в студень.

Повышение температуры увеличивает интенсивность молекулярного движения, препятствует образованию ассоциатов и структур и, следовательно, снижает вязкость растворов полимеров.

 

 

Лекция 9. Застудневание растворов и студни полимеров

 

Классификация студней. Условия их образования.

Механизм процессов гелеобразования и структура полимерных гелей.

Реология гелей. Реологические теории.

 

В отделочном производстве широко используются полимеры, растворы которых способны к застудневанию. Эти системы используются в печатании текстильных материалов для приготовления печатных красок.

Застудневание полимерного раствора можно охарактеризовать как процесс непрерывного увеличения вязкости, сопровождающийся постепенным нарастанием эластических свойств. Застудневание приводит к затвердению системы и переходу в однородную нетекучую эластичную массу – студень или гель – в результате образования структурной сетки полимера, пронизывающей весь объем системы и удерживающей растворитель.

Основной причиной застудневания в полимерных системах является усиление взаимодействия между макромолекулами полимера, находящимися в растворе или их агрегатами, вследствие частичного понижения растворимости полимера (или каких-либо его функциональных групп) в растворителе.

Застудневание может быть вызвано либо изменением температуры, либо изменением состава растворителя при данной температуре, т.е. введением осадителя.

Важное условие застудневания - достижение критической концентрации раствора, характерной для каждой пары полимер-растворитель.

Застудневание не является конечной стадией изменения системы во времени – оно является кинетическим процессом и развивается до наступления равновесного состояния, сопровождающегося разделением системы на две фазы: равновесный студень или гель постоянного состава и раствор полимера, находящийся в равновесии со студнем (синерезис студня). Если концентрация раствора полимера соответствует равновесной концентрации студня, застудневание не сопровождается синерезисом. Таково общее представление о застудневании полимеров.

 

Классификация студней

Прежде чем рассмотреть классификацию систем по условиям их образования, отметим ту неопределенность, которая существует в терминологии понятий ²студень² и ²гель². В технической литературе и технологической практике эти термины используют главным образом как синонимы.

В области физической химии полимеров и дисперсных систем придерживаются следующей терминологии и систематики.

Студни – гомогенные аморфные эластичные структурированные системы, состоящие из полимера и низкомолекулярной жидкости. Они представляют собой истинные растворы высокомолекулярных соединений, макромолекулы которых связаны в пространственные сетки молекулярными силами различной природы. Отличительная особенность от растворов той же концентрации – студни не текут.

Гели – дисперсные системы, образующиеся из золей (микрогетерогенных коллоидных растворов) при полной или частичной их коагуляции в результате сцепления частиц дисперсной фазы по отдельным точкам поверхности и удерживания жидкой дисперсной среды в ячейках возникшей структуры.

Гели имеют типично коагуляционную структуру, в которой контакт между частицами осуществляется через тонкую прослойку дисперсионной среды за счет слабых ван-дер-ваальсовых сил. Характерные свойства такой структуры – малая прочность, пластичность, эластичность и тиксотропия. Иными словами, под гелями понимают только такие системы, которые образуются при коагуляции коллоидов.

Общие свойства: наличие пространственной фазовой или молекулярной сетки (каркаса) которая лишает системы текучести и придает им свойства твердого тела - эластичность, пластичность, хрупкость, прочность. Системы характеризуются способностью к обратимым деформациям.

Наиболее известные работы в области студней принадлежат С.М. и Ю.С. Липатовым, П.А. Ребиндеру, С.П. Папкову.

1. С.П. Папков Студнеобразное состояние полимеров. – М.: Химия, 1974, – 256 с.

2. Иванова-Чумакова Л.В., Ребиндер П.А., Крус Г.И. Особенности деформационного поведения студней желатины. – Колл. ж., 1956, 18, № 6, с. 683-690.

3. Папков С.П. О некоторых проблемах в области изучения концентрированных растворов полимеров. –В.М.С., Сер. А, 1980, 22. № 10, с. 2163-2174.

4. Липатов Ю.С., Прошлякова Н.Ф. Современные представления о гелеобразовании полимеров и о строении гелей. – Успехи химии, 1961, 30, № 4, с. 517-531.

5. Липатов С.М. Физико-химия коллоидов. – М.: Госхимиздат, 1948. – 372 с.

6. Прошлякова Н.Ф., Зубов П.И., Каргин В.А. Строение студней. Получение студней из растворов сополимеров метилметакрилата и метакриловой кислоты. – Колл. ж., 1958, 20, № 2, с. 199-202.

Липатов и Прошлякова дают такое определение геля: «это дисперсная система состоящая из двух компонентов – полимера и растворителя, равномерно распределенных в объеме, и проявляющих механические свойства твердых тел».

С.П. Папков так определяет студни: «… студни – это поликомпонентные системы, состоящие из полимера и низкомолекулярной жидкости и проявляющие способность к высокой обратимой деформации при отсутствии текучести».

С.П. Папков дает следующую классификацию студней: 1) студни, образующиеся при набухании сшитых полимеров с молекулярной пространственной сеткой, т.е. однофазные студни, и 2) студни, у которых пространственный остов имеет фазовый характер и является высококонцентрированной фазой, возникающей при распаде однофазного исходного раствора на две сосуществующие фазы.

Такое разделение дает основание рассматривать системы первого типа как собственно студни (однофазные системы), а системы второго типа как дисперсные системы – двухфазные гели, обладающие коагуляционной структурой.

Мы будем рассматривать системы 2-го типа, которые относятся к коллоидным дисперсным системам.

 

<== предыдущая лекция | следующая лекция ==>
 | 
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 389; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.