![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Уравнение Шрёдингера. Квантование энергии и момента импульса. Атом водородаЛекция 3.14. Волновая функция. Уравнение Шрёдингера. В развитие идеи де-Бройля о волновых свойствах вещества Э.Шрёдингер получил в 1926г. свое знаменитое уравнение. Он сопоставил движению микрочастицы комплексную функцию координат и времени, которую назвал волновой функцией и обозначил греческой буквой Из такого определения следуют свойства волновой функции. Она должна быть однозначной, непрерывной, гладкой (производная не терпит разрыва), конечной. Кроме того, она должна подчиняться условию нормировки Основная задача физики микрочастиц (волновой или квантовой механики) как раз и состоит в нахождении волновых функций и связанных с ними физических следствий в самых разнообразных условиях. Для ее решения служит волновое уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. (Заметим, что одним из решений этого уравнения в свободном пространстве должна быть плоская волна де-Бройля (3.13.9).) Особое значение в квантовой механике имеют стационарные состояния. Это такие состояния, в которых все наблюдаемые физические параметры не меняются с течением времени. Оказывается, что в стационарных состояниях
где частота
где т - масса частицы, Е – ее энергия, Энергия частицы Е входит в уравнение в качестве параметра. В теории дифференциальных уравнений доказывается, что уравнения вида (3.14.2) имеют решения, удовлетворяющие стандартным условиям, не при любых значениях параметра Е, а лишь при некоторых избранных значениях. Эти избранные значения называются собственными значениями энергии. Решения (значения волновой функции), соответствующие собственным значениям Е, называются собственными функциями. Совокупность собственных значений называется спектром величины (энергии). Если эта совокупность образует дискретную последовательность, спектр называется дискретным, если же – непрерывную последовательность, спектр непрерывный или сплошной. Таким образом, из основных положений квантовой механики без каких-либо дополнительных предположений следует квантование (дискретность) энергии.
Частица в бесконечно глубокой потенциальной яме. Рассмотрим квантование энергии на простейшем примере движения частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Пусть частица может двигаться только вдоль оси х, где движение ограничено непроницаемыми для частицы стенками: х = 0 и х = l. Потенциальная энергия равна нулю при 0≤ х ≤ l и обращается в бесконечность при х < 0 и x > l . Поскольку волновая функция в этом случае будет зависеть только от х, уравнение Шрёдингера будет иметь вид
За пределы потенциальной ямы частица попасть не может. Поэтому вероятность обнаружить там частицу, а, следовательно, и волновая функция в этих областях равна нулю. Из условия непрерывности следует, что и на границах ямы она равна нулю
В области, где Введя обозначение получим уравнение решение которого будет иметь вид
Из первой части условия (3.14.4) следует Будет выполнена лишь в случае, если
откуда, приняв во внимание (3.14.6), найдем собственные значения энергии частицы Спектр энергии оказался дискретным. Оценим «расстояния» между соседними уровнями. Разность энергий между двумя соседними уровнями равна
Если оценить эту величину для молекулы газа в сосуде (т ~ 10
так что дискретность энергетических уровней будет весьма заметна.
Атом водорода. Рассмотрим систему, называемую водородоподобным атомом, состоящую из неподвижного ядра с зарядом Ze и движущегося вокруг него электрона (при Z=1 – это атом водорода). Потенциальная энергия электрона представляет собой в этом случае сферически симметричную функцию
Такой случай не предусматривался теорией Бора. В ней движение электрона вокруг ядра происходило по плоским орбитам. Но в квантовой механике, в которой нет представления о движении электронов по орбитам, нет препятствий для реализации сферически симметричных состояний атома. Поэтому уравнение Шрёдингера целесообразно записать в сферической системе координат: r, Случай Е > 0 соответствует электрону, пролетающему вблизи ядра и удаляющемуся на бесконечность. Случай Е < 0 - электрону, связанному с ядром. Заметим, что полученное выражение (3.14.13) совпадает с соответствующей формулой теории Бора (3.12.12). Однако в квантовой механике эти значения получаются из решения основного уравнения без введения каких-либо дополнительных предположений. Собственные функции уравнения Шрёдингера оказываются зависящими от трех целочисленных параметров, которые принято обозначать п, l, т, и распадаются на два множителя, один из которых зависит только от r, другой – от углов
Параметры п, l , т называются квантовыми числами. Параметр п называется главным квантовым числом и совпадает с номером уровня энергии в (3.14.13). Параметр l называется азимутальным (или орбитальным) квантовым числом и может при заданном п принимать значения l = 0,1,2,…(n-1). (3.14.15) Параметр т - магнитное квантовое число может иметь значения т = -l, -l+1,…,-1, 0, +1,…,l – 1, l. (3.14.16) Используя условие нормировки и вид
Рис.3.14.1. Из уравнения Шрёдингера следует также, что квантованным будет и момент импульса электрона. Поскольку, как уже говорилось ранее, все три проекции момента импульса одновременно не могут быть определены, то определяют модуль момента импульса L и его проекцию на одну из осей L
Из этих формул вытекает, что L При переходе атома из одного состояние в другое изменяется его энергия, что сопровождается излучением или поглощением фотона. Так как фотон имеет не равный нулю момент импульса, то момент импульса атома должен соответственно измениться. Поэтому возможны только такие переходы, при которых азимутальное квантовое число изменяется на единицу
Дата добавления: 2013-12-13; Просмотров: 1106; Нарушение авторских прав?; Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Читайте также:
|