Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция № 11. Элементы релятивистской механики




Элементы релятивистской механики

7.1. Границы применимости классической механики.

7.2. Постулаты Эйнштейна.

7.3. Преобразования Лоренца.

7.4. Следствия из преобразований Лоренца.

7.5. Теорема сложения скоростей в СТО.

7.1. Границы применимости классической механики

Классическая механика (иначе механика Ньютона) предопределило развитие физической науки, так как в ней были сформулированы количественные закономерности механического движения. В классической механике устанавливается способ описания движения материальных точек, что дает возможность теоретического объяснения механических явлений, встречающихся в природе.

Механика Ньютона покоится на прочном фундаменте экспериментальных фактов, однако все они относятся к медленным движениям макроскопических тел. Под медленными или нерелятивистскими движениями понимают движения, скорости которых очень малы по сравнению со скоростью света в вакууме с = 300 000 км/с. Движения, скорости которых приближаются к скорости света в вакууме, называют быстрыми или релятивистскими. В этом смысле движение спутника или космического корабля со скоростью u = 8 км/с является еще очень медленным.

Теория относительности Эйнштейна предсказала, а опыт подтвердил это предсказание, что механика Ньютона не может быть применима к движениям частиц, скорости которых близки к скорости света в вакууме. На основе теории относительности была создана новая механика, применимая не только к медленным, но и к сколь угодно быстрым движениям. Она называется релятивистской механикой.

Согласно механике Ньютона скорость, до которой можно ускорить тело из состояния покоя, в принципе ничем не ограничена. По релятивистской механике значение скорости ускоряемого тела не может перейти через определенный предел, равный скорости света в вакууме с. В этом смысле скорость света с является предельной. Скорость тела не может ее достигнуть, но в принципе может подойти к ней сколь угодно близко.

Теория относительности установила границы применимости ньютоновской механики со стороны больших скоростей. Другое ограничение, и притом не только ньютоновской, но и релятивистской макроскопической механики, было получено в результате изучения микромира − мира атомов, молекул, электронов.

При изучении микромира физики сначала применяли понятия и законы, введенные и установленные для макроскопических тел. Электрон, например, рассматривался как твердый или деформируемый шарик, по объему которого как-то распределен электрический заряд. Считалось, что поведение электрона управляется теми же законами механики и электродинамики, которые были экспериментально установлены для макроскопических электрически заряженных тел. Считалось, что все понятия и законы макроскопической физики применимы и имеют смысл для тел сколь угодно малых размеров и для сколь угодно малых промежутков времени. Считалось, что для понимания явлений микромира не требуется новых понятий и законов, помимо тех, которыми располагает макроскопическая физика. Короче, микромир рассматривался просто как уменьшенная копия макромира. Такой подход к изучению явлений природы и теории, основанные на нем, называются классическими.

Опыты показали, что классический подход к изучению явлений микромира не применим, или точнее, его применимость к этому кругу явлений ограничена. Адекватное описание явлений микромира (применимое, конечно, также в каких-то пределах) дает квантовая механика, существенно отличающаяся от механики классической. Движение в микромире является более сложной формой движения, чем механическое перемещение тел в пространстве.

Таким образом, механика Ньютона имеет очень широкую и практически важную область применимости. В пределах этой области она никогда не утратит своего научного и практического значения. Отказываться от механики Ньютона надо лишь вне области ее применимости, когда она приводит либо к неверным, либо к недостаточно точным результатам. Такова, например, задача о движении заряженных частиц в ускорителях, где надо пользоваться релятивистской механикой. Таковы задачи о движении электронов в атомах, которые надо решать с помощью квантовой механики.

В классической механике состояние движения частицы в любой момент времени характеризуется положением (координатой х при одномерном движении) и скоростью . Вместо скорости можно пользоваться также импульсом, т. е. величиной , равной произведению массы частицы m на ее скорость). Образом частицы является геометрическая точка, описывающая с течением времени непрерывную траекторию. В квантовой механике показано, что такой способ описания движения имеет принципиальные границы применимости.

Согласно квантовой механике состояние частицы в каждый момент времени нельзя характеризовать точными значениями ее координаты и импульса в этот момент времени. Если в каком-либо состоянии координата известна с неопределенностью d х, а импульс − с неопределенностью d р, то обе эти величины одновременно не могут быть сделаны сколь угодно малыми. Они связаны соотношением

, (7.1.1)

где h − универсальная постоянная, называемая постоянной Планка в честь немецкого физика-теоретика Макса Планка (1858−1947).

Соотношение (7.1.1) называется принципом неопределенностей Гайзенберга по имени немецкого физика-теоретика Вернера Гайзенберга (1901−1976). Это соотношение определяет принципиальный предел точности одновременного измерения координаты и импульса частицы, который не может быть превзойден никаким усовершенствованием приборов и методов измерения. Дело здесь не в ошибках измерений. Такова природа реальных частиц, что мгновенные состояния их движения не могут быть охарактеризованы классически − точными значениями координат и импульсов. Частицы ведут себя более сложно, чем материальные точки классической механики. Классическая картина движения по непрерывным траекториям лишь приближенно соответствует законам природы. Границы ее применимости определяются соотношением неопределенностей (7.1.1). Из него следует, что мгновенное состояние движения частицы нельзя также характеризовать абсолютно точными значениями координаты и скорости. Неопределенности этих величин должны удовлетворять условию

. (7.1.2)

Таким образом, применимость классической механики имеет следующие границы:

1) классическая механика применима для описания механических систем, в которых скорость составляющих ее объектов намного меньше скорости света (u << с);

2) классическая механика применима для описания только тех объектов, для которых динамические величины с размерностью действия намного больше постоянной Планка.




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 636; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.013 сек.