Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Токи размыкания и замыкания цепи. Энергия и плотность энергии магнитного поля

Посмотрим, как влияет э.д.с. самоиндукции на процесс установления тока в цепи, содержащей индуктивность.

В цепи, представленной на схеме 10.10, течёт ток. Отключим источник e, разомкнув в момент времени t = 0 ключ К. Ток в катушке начинает убывать, но при этом возникает э.д.с. самоиндукции, поддерживающая убывающий ток.

Рис. 10.10.

Запишем для новой схемы 10.10. b уравнение правила напряжений Кирхгофа:

.

Разделяем переменные и интегрируем:

Пропотенцировав последнее уравнение, получим:

.

Постоянную интегрирования найдём, воспользовавшись начальным условием: в момент отключения источника t = 0, ток в катушке I (0) = I 0.

Отсюда следует, что c = I 0 и поэтому закон изменения тока в цепи приобретает вид:

. (10.7)

График этой зависимости приведён на рис. 10.11. Оказывается, ток в цепи, после выключения источника, будет убывать по экспоненциальному закону и станет равным нулю только спустя t = ¥.

Рис. 10.11.

Вы и сами теперь легко покажете, что при включении источника (после замыкания ключа К) ток будет нарастать тоже по экспоненциальному закону, асимптотически приближаясь к значению I 0 (см. рис. 10.11.).

. (10.8)

Но вернёмся к первоначальной задаче размыкания цепи.

Мы отключили в цепи источник питания (разомкнули ключ К), но ток — теперь в цепи 10.8. b — продолжает течь. Где черпается энергия, обеспечивающая бесконечное течение этого убывающего тока?

Ток поддерживается электродвижущей силой самоиндукции e = . За время dt убывающий ток совершит работу:

dA = eСИ× I × dt = – LIdI.

Ток будет убывать от начального значения I 0 до нуля. Проинтегрировав последнее выражение в этих пределах, получим полную работу убывающего тока:

. (10.9)

Совершение этой работы сопровождается двумя процессами: исчезновением тока в цепи и исчезновением магнитного поля катушки индуктивности.

С чем же связана была выделившаяся энергия? Где она была локализована? Располагалась ли она в проводниках и связана ли она с направленным движением носителей заряда? Или она локализована в объёме соленоида, в его магнитном поле?

Опыт даёт ответ на эти вопросы: энергия электрического тока связана с его магнитным полем и распределена в пространстве, занятом этим полем.

Несколько изменим выражение (10.9), учтя, что для длинного соленоида справедливы следующие утверждения:

L = m0 n 2 Sl (10.5) — индуктивность;

B 0 = m0 nI 0 (9.17) — поле соленоида.

Эти выражения используем в (10.9) и получим новое уравнение для полной работы экстратока размыкания, или — начального запаса энергии магнитного поля:

. (10.10)

Здесь V = S × l — объём соленоида (магнитного поля!).

Энергия катушки с током пропорциональна квадрату вектора магнитной индукции.

Разделив эту энергию на объём магнитного поля, получим среднюю плотность энергии:

[]. (10.11)

Это выражение очень похоже на выражение плотности энергии электростатического поля:

.

Обратите внимание: в сходных уравнениях, если e0 — в числителе, m0 — непременно в знаменателе.

Зная плотность энергии в каждой точке магнитного поля, мы теперь легко найдём энергию, сосредоточенную в любом объёме V поля.

Локальная плотность энергии в заданной точке поля:

.

Значит, dW = w dV и энергия в объёме V равна:

.

Лекция 11 «Электрические колебания»

План лекции

1. Колебательные контуры. Квазистационарные токи.

2. Собственные электрические колебания.

2.1. Собственные незатухающие колебания.

2.2. Собственные затухающие колебания.

3. Вынужденные электрические колебания.

3.1. Сопротивление в цепи переменного тока.

3.2. Ёмкость в цепи переменного тока.

3.3. Индуктивность в цепи переменного тока.

3.4. Вынужденные колебания. Резонанс.

3.5. Проблема косинуса фи.

<== предыдущая лекция | следующая лекция ==>
Индуктивность. Индуктивность соленоида. Явление самоиндукции | Колебательные контуры. Квазистационарные токи
Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 576; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.