Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Битовые поля

Объявления структур

Синтаксис: struct[<tag>]{<member-declaration-list>}<declarator>[,<declarator>...]; struct<tag><declarator>[,<declarator>...];

Об"явление структуры задает имя типа структуры и специфици­рует последовательность переменных величин, называемых элементами структуры, которые могут иметь различные типы.

Об"явление структуры начинается с ключевого слова struct и имеет две формы представления, как показано выше. В первой форме представления типы и имена элементов структуры специфицируются в списке об"явлений элементов <member-declaration-list>. <tag>- это идентификатор, который именует тип структуры, определенный в списке об"явлений элементов.

Каждый <declarator> задает имя переменной типа структуры. Тип переменной в деклараторе может быть модифицирован на указа­тель к структуре, на массив структур или на функцию, возвращающую структуру.

Вторая синтаксическая форма использует тег- <tag> структуры для ссылки на тип структуры. В этой форме об"явления отсутствует список об"явлений элементов, поскольку тип структуры определен в другом месте. Определение типа структуры должно быть видимым для тега, который используется в об"явлении и определение должно предшествовать об"явлению через тег, если тег не используется для об"явления указателя или структурного типа typedef. В последних случаях об"явления могут использовать тег структуры без предвари­тельного определения типа структуры, но все же определение должно находиться в пределах видимости об"явления.

Список об"явлений элементов <member-declaration-list>- это одно или более об"явлений переменных или битовых полей. Каждая

переменная, об"явленная в этом списке, называется элементом структурного типа. Об"явления переменных списка имеют тот же са­мый синтаксис, что и об"явления переменных обсуждаемых в этой главе, за исключением того, что об"явления не могут содержать спецификаторов класса памяти или инициализаторов. Элементы струк­туры могут быть любого типа: основного, массивом, указателем, совмещением или структурой.

Элемент не может иметь тип структуры, в которой он появля­ется. Однако, элемент может быть об"явлен, как указатель на тип структуры, в которую он входит, позволяя создавать списочные структуры.

Об"явления битовых полей имеют следующий синтаксис:

<type-specifier>[<identifier>]:<constant-expression>; Битовое поле состоит из некоторого числа бит, специфициро-

ванных константным выражением- <constant- expression>. Для бито-

вого поля спецификатор типа <type- specifier> должен специфициро-

вать беззнаковый целый тип, а константное выражение должно быть неотрицательной целой величиной. Массивы битовых полей, указатели на битовые поля и функции, возвращающие битовые поля не допуска­ются. Идентификатор- <identifier> именует битовое поле. Неимено­ванное битовое поле, чей размер специфицируется как нулевой, име­ет специальное назначение: оно гарантирует, что память для следу­ющей переменной об"явления будет начинаться на границе int.

Идентификаторы элементов внутри об"являемой структуры должны быть уникальными. Идентификаторы элементов внутри разных структур могут совпадать. В пределах той же самой видимости теги структур должны отличаться от других тегов (тегов других струк­тур, совмещений и перечислений).

Переменные (элементы) структуры запоминаются последователь­но в том же самом порядке, в котором они об"являются: первой пе­ременной соответствует самый младший адрес памяти, а последней­самый старший. Память каждой переменной начинается на границе свойственной ее типу. Поэтому могут появляться неименованные участки между соседними элементами.

Битовые поля не располагаются на пересечении границ, обяв­ленных для них типов. Например, битовое поле, об"явленое с типом unsigned int, упаковывается или в пространстве, оставшимся от предидущего unsigned int или начиная с нового unsigned int.

Примеры

/**************** Example 1 ****************/

struct {

float x,y;

} complex;

/**************** Example 2 *****************/

struct employee {

char name[20];

int id;

long class;

} temp;

/**************** Example 3 ******************/

struct employee student, faculty, staff;

/**************** Example 4 ******************/ struct sample {

char c;

float *pf;

struct sample *next;

} x;

/***************** Example 5 ******************/

struct {

unsigned icon: 8;

unsigned color: 4; unsigned underline: 1; unsigned blink: 1;

} screen[25][80];

В первом примере об"является переменная с именем complex типа структура. Эта структура состоит из двух элементов x и y ти­па float. Тип структуры не поименован.

Во втором примере об"является переменная с именем temp типа структура. Структура состоит из трех элементов с именами name, id и class. Элемент с именем name- это массив иэ 20- ти элементов типа char. элементы с именами id и class- это простые переменные типа int и long соответственно. Идентификатор employee является тегом структуры.

В третьем примере об"явлены три переменных типа структура с именами: student, faculty и staff. Каждая из структур состоит из трех элементов одной и той же конструкции. Элементы определены при об"явлении типа структуры с тегом employee в предыдущем примере.

В четвертом примере об"является переменная с именем x типа структура. Первые два элемента структуры представлены переменной c типа char и указателем pf на величину типа float. Третий эле­мент с именем next об"являются как указатель на описываемую структуру sample.

В пятом примере об"является двумерный массив поименованный screen, элементы которого имеют структурный тип. Массив состоит из 2000 элементов и каждый элементэто отдельная структура, состо­ящая из четырех элементов типа bit-fild с именами icon, color, underline и blink.

Об"явление совмещений

Синтаксис: union[<tag>]{<member-declaration-list>}<declarator>[,<declarator>...]; union<tag><declarator>[,<declarator>...];

Об"явление совмещения определяет имя переменной совмещения и специфицирует множество переменных, называемых элементами сов­мещения, которые могут быть различных типов. Переменная с типом совмещения запоминает любую отдельную величину, определяемую на­бором элементов совмещения.

Об"явление совмещения имеет тот же самый синтаксис, как и об"явление структуры, за исключением того, что она начинается с ключевого слова union вместо ключевого слова struct. Для об"явле­ния совмещения и структуры действуют одни и те же правила, за ис­ключением того, что в совмещении не допускаются элементы типа би­товых полей.

Память, которая соответствует переменной типа совмещение, определяется величиной для размещения любого отдельного элемента совмещения.

Когда используется наименьший элемент совмещения, то пере­менная типа совмещения может содержать неиспользованное простран­ство. Все элементы совмещения запоминаются в одном и том же прос­транстве памяти переменной, начиная с одного и того же адреса. Запомненные значения затираются каждый раз, когда присваивается значение очередного элемента совмещения.

Примеры:

/************** Example 1 ********************/

union sign {

int svar;

unsigned uvar;

} number;

/************** Example 2 ********************/

union {

char *a, b;

float f[20];

} jack;

/*************** Example 2 *******************/

union {

struct {

char icon;

unsigned color: 4;

} window1, window2, window3, window4;

} screen[25][80];

В первом примере об"является переменная типа совмещения, поименованная number. Список элементов совмещения состоит из двух

об"явлений переменных: svar типа int и uvar типа unsigned. Это об"явление позволяет запоминать текущее значение number в знако­вом или беззнаковом виде. Тип совмещения поименован идентификато­ром sign.

Во втором примере об"является переменная типа совмещения с именем jack. Список элементов об"явления состоит из трех об"явле­ний: указателя a на величину типа char, переменной b типа char и массива f из 20 элементов типа float. Тип совмещения не поимено­ван.

Память, распределенная для переменной jack, равна памяти, распределенной под массив f, поскольку f самый большой элемент совмещения.

В третьем примере об"является двумерный массив совмещений с именем screen. Массив состоит из 2000 об"ектов. Каждый об"ект­это отдельное совмещение из четырех элементов: window1, window2, window3, window4, где каждый элемент- это структура. В любое за­данное время каждый об"ект совмещения поддерживается одним из че­тырех возможных элементов типа структура. Таким образом, перемен­ная screen- это композиция четырех возможных "windows".

Об"явление массива

Синтаксис: <type-specifier><declarator>[<constant-expression>]; <type-specifier><declarator>[];

Здесь квадратные скобки- это терминальные символы. Об"явле­ние массива определяет тип массива и тип каждого элемента. Оно может определять также число элементов в массиве. Переменная типа массив рассматривается как указатель на элементы массива. Об"яв­ление массива может представляться в двух синтаксических формах, указанных выше. Декларатор<declarator> задает имя переменной. Квадратные скобки, следующие за декларатором, модифицируют декла­ратор на тип массива. Константное выражение

<constant-expression>, заключенное в квадратные скобки, определя­ет число элементов в массиве. Каждый элемент имеет тип, задавае­мый спецификатором типа <type-specifier>, который может специфи­цировать любой тип, исключая void и тип функции.

Во второй синтаксической форме опущено константное выраже­ние в квадратных скобках. Эта форма может быть использована толь­ко тогда, когда массив инициализируется или об"явлен как формаль­ный параметр или об"явлен как ссылка на массив, явно определенный где-то в программе.

Массив массивов или многомерный массив определяется путем задания списка константных выражений в квадратных скобках, следу­щего за декларатором:

<type-specifier><declarator>[<constant-expression>]

[<constant-expression>]...

Каждое константное выражение- <constant-expression> в квад­ратных скобках определяет число элементов в даннном иэмерении

массива, так что об"явление двумерного массива содержит два конс­тантных выражения, трехмерного- три и т.д. Если многомерный мас­сив об"является внутри функции или если он инициализируется либо об"является как формальный параметр или об"является как ссылка на

массив, явно определенный где- то в программе, то первое констан­тное выражение может быть опущено.

Массив указателей на величины,заданного типа, может быть определен посредством составного декларатора, как было описано в разделе 4.3.2.

Типу массив соответствует память, которая требуется для размещения всех его элементов. Элементы массива с первого до пос­леднего запоминаются в последовательных возрастающих адресах па­мяти. Между элементами массива в памяти разрывы отсутствуют. Эле­менты массива запоминаются друг за другом построчно. Например, массив, содержащий две строки с тремя столбцами каждая,

char A[2][3]

будет запомнен следующим образом. Сначала запоминаются три столбца первой строки, затем элементы трех столбцов второй стро­ки. Смысл этого в том, чтобы последний индекс был более быстрым. Чтобы сослаться на отдельный элемент массива, нужно использовать индексное выражение, которое описано в разделе 5.2.5.

Примеры:

/*************** Example 1 ******************/

int scores[10], game;

/*************** Example 2 ******************/

float matrix[10][15];

/*************** Example 3 ******************/

struct {

float x,y;

} complex[100];

/*************** Example 4 *******************/

char *name[20];

В первом примере об"является переменная типа массив с име­нем scores из 10 элементов типа int. Переменная с именем game об"явлена как простая переменная целого типа.

Во втором примере об"является двумерный массив с именем matrix. Массив состоит из 150-ти элементов типа float.

В третьем примере об"является массив структур. Массив сос­тоит из 100 об"ектов. Каждый об"ект массива представляет собой структуру, состоящую из двух элементов.

В четвертом примере об"явлен массив указателей. Массив сос­тоит из 20-ти элементов, каждый из которых является указателем на величину типа char.

4.4.6. Об"явление указателей

Синтаксис:

<type-specifier> *<declarator>;

Об"явление указателя определяет имя переменной типа указа­тель и тип об"екта, на который указывает эта переменная. Деклара­тор- <declarator> определяет имя переменной с возможной модифика­цией ее типа. Спецификатор типа- <type- specifier> задает тип об"екта, который может быть базового типа, типа структуры или совмещения.

Переменная типа указатель может указывать также на функции, массивы и другие указатели. Более полная информация о типах ука­зателей дана в разделе 4.3.2. "Составные деклараторы".

Если указатель не используется до определения типа структу­ры или совмещения, то он может быть об"явлен ранее этого опреде­ления. Такие об"явления допускаются, поскольку компилятору не требуется знать размера структуры или совмещения, чтобы распреде­лить память под переменную типа указатель. Указатель может быть об"явлен посредством использования тега структуры или совмещения (смотри ниже пример 4).

Переменная, об"явленная как указатель, хранит адрес памяти. Размер памяти, требуемый для адреса, и смысл адреса зависит от данной конфигурации машины. Указатели на различные типы не обяза­тельно имеют одну и ту же длину.

Для некоторых реализаций используются специальные ключевые слова near, far и huge, чтобы модифицировать размер указателя. Об"явления, использующие специальные ключевые слова, были описаны в разделе 4.3.3. Информация о смысле ключевых слов дана в системной документации.

Примеры:

char *message; /* Example 1 */

int *pointers[10]; /* Example 2 */ int (*pointer)[10]; /* Example 3 */ struct list *next, *previous; /* Example 4 */

struct list { /* Example 5 */ char *token;

int count;

struct list *next;

} line;

struct id { /* Example 6 */ unsigned int id_no;

struct name *pname;

} record;

В первом примере об"является переменная- указатель поимено­ванная message. Она указывает на величину типа char.

Во втором примере об"явлен массив указателей, поименованный pointers. Массив состоит из 10 элементов. Каждый элемент- это указатель на переменную типа int.

В третьем примере об"явлена переменная- указатель, поимено­ванная pointer. Она указывает на массив из 10 элементов. Каждый элемент в этом массиве имеет тип int.

В четвертом примере об"явлены две переменныхуказателя, ко­торые ссылаются на величины структурного типа list (смотри следу­ющий пример). Определение типа с именем list должно находиться в пределах видимости об"явления.

В пятом примере об"является переменная с именем line, структурного типа, поименованного list. Тип структуры с именем list определяется тремя элементами. Первый элементэто указатель на величину типа char, второй- на величину типа int, а третий­это указатель на следующую структуру типа list.

В шестом примере об"является переменная с именем record, имеющая тип структуры с именем id. Заметим, что третий элемент с именем pname об"явлен как указатель на другой тип структуры с именем name. Это об"явление может появиться перед об"явление структуры с именем name.

Об"явление функций

Синтаксис:

[<type-specifier>]<declarator>([<arg-type-list>])[,<declarator>...];

Об"явление функции определяет имя, тип возврата функции и, возможно, типы и число ее аргументов. Об"явление функции также называется forward- об"явлением. Декларатор функции об"являет имя функции, а спецификатор типа задает тип возврата. Если специфика­тор типа опущен в об"явлении функции, то предполагается, что функция возвращает величину типа int.

Об"явление функции может включать спецификаторы класса па­мяти extern или static.

Список типов аргументов.

Список типов аргументов- <arg-type-list> определяет число и типы аргументов функции. Синтаксис списка аргументов следующий:

<type-name-list>[,...]

Список имен типов- это список из одного или более имен ти­пов. Каждое имя типа отделяется от другого запятой. Первое имя типа задает тип первого аргумента, второе имя типа задает тип второго аргумента и т. д. Если список имен типов заканчивается запятой с многоточием (,...), то это означает, что число аргумен­тов функции переменно. Однако, предполагается, что функция будет иметь не меньше аргументов, чем имен типов, предшествующих много­точию.

Если список типов аргументов- <arg-type-list> содержит

только многоточие (...), то число аргументов функции является пе-

ременным или равно нулю.

Замечание:

Чтобы поддержать совместимость с программами предидущих версий, компилятор допускает символ запятой без многоточия в кон­це списка типов аргументов для обозначения их переменного числа. Запятая может быть использована и вместо многоточия для об"явле­ния нуля или более аргументов функции. Использование запятой под­держивается только для совместимости. Использование многоточия рекомендуется для нового представления.

Имя типа- <type- name> для типов структуры, совмещения или базового типа состоит из спецификатора этого типа (такого как int). Имена типов для указателей, массивов и функций формируются пу­тем комбинации спецификатора типа с "абстрактным декларатором". Абстрактный декларатор- это декларатор без идентификатора. В раз­деле 4.9 "Имена типов" об"ясняется, каким об"разом формировать и интерпретировать абстрактные деклараторы.

Для того чтобы об"явить функцию, не имеющую аргументов, мо­жет быть использовано специальное ключевое слово void на месте списка типов аргументов. Компилятор вырабатывает предупреждающее сообщение, если в вызове такой функции будут специфицированы ар­гументы.

Еще одна специальная конструкция допускается в списке типов аргументов. Это фраза void *, которая специфицирует аргумент типа указатель. Эта фраза может быть использована в списке типов аргу­ментов вместо имени типа.

Список типов аргументов может быть опущен. В зтом случае скобки после идентификатора функции все же требуются, хотя они и пусты. В этом случае в об"явлении функции не определяются ни ти­пы, ни число аргументов в функции. Когда эта информация опускает-

ся, то компилятор не проверяет соответствия между формальными и фактическими параметрами при вызове функции. Более подробная ин­формация дана в разделе 7.4 "Вызовы функций".

Тип возврата

Функции могут возвращать величины любого типа за исключени­ем массивов и функций. Для этого посредством спецификатора типа­"type-specifier" в об"явлении функции можно специфицировать любой тип: основной, структуру или совмещение. Идентификатор функции может быть модифицирован одной или несколькими звездочками (*), чтобы об"явить возвращаемую величину типа указателя.

Хотя функции и не допускают возвратов массивов или функций, но они могут возвращать указатели на массивы или функции. Функ­ции, которые возвращают указатели на величины типа массив или функция, об"являются посредством модификации идентификатора функ­ции квадратными скобками, звездочкой и круглыми скобками, чтобы сформировать составной декларатор. Формирование и интерпретация составных деклараторов рассматривались в разделе 4.3.2.

Примеры:

int add(int, int); /* Example 1 */

double calc(); /* Example 2 */

char *strfind(char *,...); /* Example 3 */

void draf(void); /* Example 4 */

double (*sum(double, double)) [3]; /* Example 5 */ int (*select(void)) (int); /* Example 6 */

char *p; /* Example 7 */

short *q;

int prt(void *);

В первом примере об"является функция, поименованная add, которая требует два аргумента типа int и возвращает величину типа int.

Во втором примере об"является функция, поименованная calc, которая возвращает величину типа double. Список типов аргументов не задан. В третьем примере об"является функция, поименованная strfind, которая возвращает указатель на величину типа char. Фун­кция требует, по крайней мере один аргументуказатель на величину типа char. Список типов аргументов заканчивается запятой с много­точием, обозначающим, что функция может потребовать большее число аргументов.

В четвертом примере об"является функция с типом возврата void (нет возвращаемой величины). Список типов аргументов также void, означающий отсутствие аргументов для этой функции.

В пятом примере sum об"является как функция, возвращающая указатель на массив из трех величин типа double. Функция sum тре­бует два аргумента, каждый из которых является величиной типа double.

В шестом примере функция, поименованная select, об"явлена без аргументов и возвращает указатель на функцию. Указатель возв­рата ссылается на функцию, требующую один аргумент типа int и возвращающую величину типа int.

В седьмом примере об"явлена функция prt, которая требует аргумент- указатель любого типа, и которая возвращает величину типа int. Любой указатель p или q могли бы быть использованы как аргументы функции без выдачи при этом предупреждающего сообщения.

 

Классы памяти

Класс памяти переменной, которая определяет какой либо об"ект, имеет глобальное или локальное время жизни. Об"ект с гло­бальным временем жизни существует и имеет значение на протяжении всей программы. Все функции имеют глобальное время жизни.

Переменные с локальным временем жизни захватывают новую па-

мять при каждом выполнении блока, в котором они определены. Когда управление на выполнение передается из блока, то переменная теря-

ет свое значение.

Хотя Си определяет два типа классов памяти, но, тем не ме­нее, имеется следующих четыре спецификатора классов памяти:

auto

register

static

extern

Об"екты классов auto и register имеют локальное время жиз­ни. Спецификаторы static и extern определяют об"екты с глобальным временем жизни. Каждый из спецификаторов класса памяти имеет оп­ределенный смысл, который влияет на видимость функций и перемен­ных в той же мере, как и сами классы памяти. Термин "видимость" относится к той части программы, в которой могут ссылаться друг на друга функции и переменные. Об"екты с глобальным временем жиз­ни существуют на протяжении выполнения исходной программы, но они могут быть видимы не во всех частях программы. Видимость и свя­занная с ней концепция времени жизни рассмотрена в разделе 3.5.

Месторасположение об"явления переменной или функции внутри

исходных файлов также влияют на класс памяти и видимость. Гово­рят, что об"явления вне определения всех функций и переменных от­носятся к внешнему уровню, а об"явления внутри определений функ­ций относятся к внутреннему уровню.

Точный смысл каждого спецификатора класса памяти зависит от того, находится ли об"явление на внешнем или внутреннем уровне и от того, об"явлен ли об"ект функцией или переменной. В следующем разделе описывается смысл спецификаторов класса памяти в каждом случае об"явления, а также об"ясняется режим умолчания, когда спецификатор класса памяти опущен при об"явлении переменной или функции.

Об"явления переменной на внешнем уровне

Об"явления переменной на внешнем уровне используют специфи­каторы класса памяти static и extern или совсем опускают их. Спе­цификаторы класса памяти auto и register не допускаются на внеш­нем уровне.

Об"явления переменных на внешнем уровне- это определения переменных или ссылки на определения, сделанные в другом месте.

Об"явление внешней переменной, которое инициализирует эту

переменную (явно или неявно), называется определением этой пере­менной. Определение на внешнем уровне может задаваться в следую­щих различных формах:

-переменная на внешнем уровне может быть определена путем ее об"явления со спецификатором класса памяти static. Такая пере­менная может быть явно инициализирована константным выражением. Если инициализатор отсутствует, то переменная автоматически ини­циализируется нулем во время компиляции. Таким образом, об"явле­ния static int k = 16; и static int k; оба рассматриваются как определения;

-переменная определяется, когда она явно инициализируется

на внешнем уровне. Например, int j = 3; это определение перемен­ной.

Так как переменная определяется на внешнем уровне, то она видима в пределах остатка исходного файла, от места, где она оп­ределена. Переменная не видима выше своего определения в том же самом исходном файле ни в других исходных файлах программы, если не об"явлена ссылка, которая делает ее видимой.

Переменная может быть определена на внешнем уровне внутри исходного файла только один раз. Если задается спецификатор клас­са памяти static, то в других исходных файлах могут быть опреде­лены переменные с тем же именем. Так как каждое определение static видимо только в пределах своего собственного исходного файла, то конфликта не возникнет.

Спецификатор класса памяти extern используется для об"явле­ния ссылки на переменную, определенную где-то в другом месте. Та­кие об"явления используются в случае, когда нужно сделать видимым определение переменной в других исходных файлах или выше места, где она определена в том же самом исходном файле. Так как ссылка на переменную об"явлена на внешнем уровне, то переменная видима в пределах остатка исходного файла от места об"явления ссылки.

В об"явлениях, которые используют спецификатор класса памя­ти extern, инициализация не допускается, так как они ссылаются на переменные, чьи величины уже определены.

Переменная, на которую делается ссылка extern, должна быть определена на внешнем уровне только один раз. Определение может быть сделано в любом из исходных файлов, составляющих программу.

Есть одно исключение из правил, описанных выше. Можно опус-

тить из об"явления переменной на внешнем уровне спецификатор класса памяти и инициализатор. Например, об"явление int n; будет правильным внешним об"явлением. Это об"явление имеет два различ­ных смысла в зависимости от контекста.

1. Если где-нибудь в программе будет определена на внешнем уровне переменная с тем же именем, то об"явление является ссылкой на эту переменную, как если бы был использован спецификатор клас­са памяти extern в об"явлении.

2. Если нет такого определения, то об"явленной переменной распределяется память во время линкования и переменная инициали­зируется нулем. Если в программе появится более чем одно такое об"явление, то память распределится для наибольшего размера из об"явленных переменных. Например, если программа содержит два не­инициализированных об"явления переменной i на внешнем уровне int i; и char i; то память во время линкования распределится под пе­ременную i типа int.

Неинициализированные об"явления переменной на внешнем уров­не не рекомендуются для файлов, которые могут быть размещены в библиотеку.

Пример:

/*****************************************************

SOURCE FILE ONE *****************************************************/

extern int i; /* reference to i

defined below */

main()

{

i++;

printf("%d\n", i); /* i equals 4 */

next();

}

int i = 3; /* definition of i */

next()

{

i++;

printf("%d\n", i); /* i equals 5 */

other();

}

/***************************************************** SOURCE FILE TWO

*****************************************************/

extern int i; /* reference to i in

first source file */

other()

{

i++;

printf("%d\n", i); /* i equals 6 */

}

Два исходных файла в совокупности содержат три внешних об"явления i. Одно об"явление содержит инициализацию- int i = 3;, где глобальная переменная i определена с начальным значением равным 3.

Самое первое об"явление extern в первом файле делает гло­бальную переменную видимой выше ее определения в файле.

Без об"явления extern функция main не смогла бы сослаться на глобальную переменную i. Об"явление extern переменной i во втором исходном файле делает глобальную переменную видимой в этом исходном файле.

Все три функции выполняют одну и ту же задачу: они увеличи­вают i на 1 и печатают получившееся значение. (Предполагается, что функция printf определена где-то еще в программе.). Печатают­ся величины равные 4, 5 и 6.

Если бы переменная i не была бы инициализирована,она бы бы­ла автоматически установлена в 0 при линковании. В этом случае напечатанные значения были бы равны 1, 2 и 3.

Об"явление переменной на внутреннем уровне

Любой из четырех спецификаторов класса памяти может быть использован для об"явления переменной на внутреннем уровне. Если спецификатор класса памяти опускается в об"явлении переменной на внутреннем уровне, то подразумевается класс памяти auto.

Спецификатор класса памяти auto об"являет переменную с ло-

кальным временем жизни. Переменная видима только в том блоке, где она об"явлена. Об"явления переменных auto могут включать инициа­лизаторы. Переменные класса памяти auto автоматически не инициа­лизируются, а инициализируются явно при об"явлении или присваива­нии начальных значений, посредством операторов внутри блока. Если нет инициализации, то величина переменной auto считается неопре­деленной.

Спецификатор класса памяти register сообщает компилятору о том, чтобы он распределил память под переменную в регистре, если это возможно. Использование регистровой памяти обычно приводит к более быстрому времени доступа и к меньшему размеру результирую­щего кода. Переменные, об"явленные с классом памяти register име-

ют ту же самую видимость, что и переменные auto.

Число регистров, которое может быть использовано под память переменных, зависит от машины. Когда компилятор встречает специ­фикатор класса памяти register в об"явлении, а свободного регист­ра не имеется, то для переменной распределяется память класса auto. Компилятор назначает переменным регистровую память в том порядке, в котором появляются об"явления в исходном файле. Регис­тровая память, если она имеется, гарантирована только для целого и адресного типов.

Переменная, об"явленная на внутреннем уровне со специфика­тором класса памяти static,имеет глобальное время жизни и имеет видимость только внутри блока, в котором она об"явлена. В отличие от переменных auto, переменные, об"явленные как static, сохраняют свое значение при завершении блока.

Переменные класса памяти static могут быть инициализированы константным выражением. Если явной инициализации нет, то перемен­ная класса памяти static автоматически устанавливается в 0. Ини­циализация выполняется один раз во время компиляции. Инициализа­ция переменной класса памяти static не повторяется при новом вхо­де в блок.

Переменная, об"явленная со спецификатором класса памяти extern, является ссылкой на переменную с тем же самым именем, оп­ределенную на внешнем уровне в любом исходном файле программы.

Цель внутреннего об"явления extern состоит в том, чтобы

сделать определение переменной внешнего уровня видимой внутри блока. Внутреннее об'явление extern не изменяет видимость гло­бальной переменной в любой другой части программы.

Пример:

int i = 1;

main()

{ /* reference to i, defined above */

extern int i;

/* initial value is zero; a is

visible only within main */

static int a;

/* b is stored in a register, if possible */ register int b = 0;

/* default storage class is auto */

int c = 0;

/* values printed are 1, 0, 0, 0 */ printf("%d\n%d\n%d\n%d\n", i, a, b, c);

other();

}

other()

{

/* i is redefined */

int i = 16;

/* this a is visible only within other */

static int a = 2;

a += 2;

/* values printed are 16, 4 */

printf("%d\n%d\n", i, a);

}

Переменная i определяется на внешнем уровне с инициализаци­ей 1. В функции main об"явлена ссылка extern на переменную i внешнего уровня. Переменная класса памяти static автоматически

устанавливается в 0, так как инициализатор опущен. Вызов функции print (предполагается, что функция print определена в каком-то месте исходной программы.) печатает величины 1, 0, 0, 0.

В функции other, переменная i переопределяется как локаль­ная переменная с начальным значением 16. Это не влияет на значе­ние внешней переменной i. Переменная a об"является как переменная класса памяти static с начальным значением 2. Она не противоречит переменной a, об"явленной в функции main, так как видимость пере­менных класса памяти static на внутреннем уровне ограничена бло­ком, в котором она об"явлена.

Значение переменной увеличивается на 2 и становится равным 4. Если бы функция other была вызвана снова в той же самой прог­рамме, то начальное значение a стало бы равным 4. Внутренние пе­ременные класса памяти static сохраняют свои значения, когда за­канчивается выполнение блока, в котором они об"явлены.

Об"явление функции на внешнем и внутреннем уровнях

Функции могут быть об"явлены со спецификаторами класса па­мяти static или extern. Функции всегда имеют глобальное время жизни.

Правила видимости для функций отличаются от правил видимос­ти для переменных. Об"явления функций на внутреннем уровне имеют тот же самый смысл, что и об"явления на внешнем уровне. Это зна­чит, что функции не могут иметь блочной видимости и видимость функций не может быть вложенной. Функция об"явленная как static,

видима только в пределах исходного файла, в котором она определя­ется. Любая функция в том же самом исходном файле может вызвать функцию static, но функции static из других файлов нет. Функция static с тем же самым именем может быть об"явлена в другом исход­ном файле.

Функции, об"явленные как extern видимы в пределах всех ис­ходных файлов, которые составляют программу. Любая функция может вызвать функцию extern.

Об"явления функций, в которых опущен спецификатор класса памяти, считаются по умолчанию extern.

<== предыдущая лекция | следующая лекция ==>
Объявление перечисления | Составные типы
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 374; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.171 сек.