Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные проблемы гигиены труда при работе с радиоактивными веществами и источниками ионизирующего излучения. Дозиметрический контроль. Меры защиты

Каждый человек имеет определенный кругозор или.горизонт. Когда он сужается и становится беско­нечно малым, то превращается в точку. Тогда чело­век говорит: "Это моя точка зрения". Моей же точкой зрения является то, что в конце "атомного века" каж­дый человек должен знать основы радиационной без­опасности, иметь хотя бы общее представление о ра­диационной гигиене.

Радиационная гигиена является особой гигиени­ческой дисциплиной, которая выделена по действую­щему фактору, а не по контингенту, и которая орга­нично входит во все разделы гигиены, а именно: в ги­гиену окружающей среды (водоснабжение, воздуш­ная среда, жилище), гигиену питания, медицину ката­строф и экстремальных ситуаций при радиационных и ядерных авариях, в гигиену организованных контин-гентов (например, военнослужащих), гигиену детей и подростков, гигиену труда.

И нельзя уставать, повторяя, что радиационную гигиену, ее основы должен знать врач любой специ­альности, чтобы обезопасить прежде всего себя, близких и, конечно, своих пациентов от вредоносно­го воздействия ионизирующей радиации на здоровье и жизнь.

В медицине ионизирующее излучение и радиоак­тивные вещества используются довольно широко:

1) с целью диагностики (рентгеноскопия, рент­генография, флюорография, скеннирование — ста­тическая сцинтиграфия, ренография —динамическая сцинтиграфия, компьютерная томография, рентгено-кимография, исследование обменных процессов и скорости кровотока с помощью изотопов и др.);

2) с целью лечения (теле-гамма-терапия, близко-фокусная рентгенотерапия, радиоаппликационная терапия, внутриполостная и внутритканевая радиоте­рапия);

3) с научно-исследовательскими целями (метод авторадиографии, метод радиоактивных меток, при котором любое вещество можно пометить радиоак­тивной меткой и проследить весь путь в организме, ^все превращения и т. д. Эти методы применяются для изучения патогенеза заболеваний. Так, например, на нашей кафедре патогенез пищевой токсикоинфек-ции, вызываемой Clostn'dium perfringens типа А, изу­чали с помощью метода меченых атомов).

На конец 80-х годов от использования ионизиру­ющих излучений в медицине на каждого жителя в на­шей стране приходилось в среднем свыше 1,3 услов­ных рентгеновских процедур в год, адля жителей Москвы, Ленинграда и Киева -^ около трех условных рентгеновских процедур в год (одна условная рент­геновская процедура приравнивается к дозе, получа­емой при рентгенографии грудной клетки). О дозах, получаемых населением нашей страны, можно судить по смертности от раковых заболеваний, индуцирован­ных ионизирующим излучением (по В.А. Книжнико-ву): на 278 млн. человек естественный радиационный фон дает 3 тыс. дополнительных смертей в год, диа­гностическая медицина — 4,5 тыс., с учетом лечения неонкологических заболеваний — 10 тыс., техноген-ный фон дает 5 тыс., атомные электростанции — менее 1 тыс., тепловые электростанции — 7-9 тыс. до­полнительных смертей в год. В сумме получается 15-20 тыс. смертей от раковых заболеваний в год, инду­цированных ионизирующим излучением, на 278 млн. человек. А истинная смертность от онкологических заболеваний достигает 450 тыс. смертей в год. Это указывает на то, что ионизирующие излучения ответ­ственны лишь за 1/30, а по данным других авторов

— за 1 /10 часть онкологических заболеваний. Основ­ная же часть этих заболеваний индуцируется, по-ви­димому, химическими и биологическими агентами (канцерогенные вещества, вирусы).

Теперь мы вспомним, что такое радиоактив­ность, ионизирующие излучения, дозы —. все это вы изучали по физике в средней школе и на началь­ных курсах университета.

Радиоактивность самопроизвольное превра­щение ядер атомов одних элементов в другие, сопро­вождающееся испусканием ионизирующих излуче­ний. Именно превращение, а не распад, т. к. К-захват и L-захват также являются радиоактивностью, но рас­пада здесь не происходит, а происходит захват яд­ром атома электронов К и L уровней оболочки с ис­пусканием гамма-кванта. Для характеристики радио­активности используются единицы активности:

1) системная единица (в системе СИ) — бекке-рель (Бк), равная одному ядерному превращению в секунду;

2) несистемная (специальная) единица — кюри (Кч), равная 3,7х10'° беккерелей, или 2,22х10" дер-ных превращений в минуту;

3) у-эквивалентная величина, называемая мили-грамм-эквивалент радия (мг-экв. Ra), равная 1 мКи, так как кюри = 1 гр. радия. (1 мг-экв. Ra созда­ет мощность экспозиционной дозы = 8,4 рентгена в час на расстоянии 1 см от точечного источника);

4) физики часто используютединицу активности в 1 Резерфорд (Rd), равный 106 Бк (одному миллиону беккерелей);

5) единицы удельной активности: Эман = 3,7 Бк/литр, Махе = 13,5 Бк/литр (устаревшая еди­ница).

Ионизирующее излучение любое излучение, за исключением видимого света и ультрафиолетово­го излучения, взаимодействие которого со средой приводит к ее ионизации, т.е. к образованию заря­дов обоих знаков. Все виды ионизирующих излуче­ний разделяют условно на электромагнитные (или волновые) — 2 или 3 излучения (гамма-излучение и рентгеновское, представляющее совокупность тор­мозного и характеристического излучений) и корпу­скулярные (ос-, (3-, нейтронное, протонное, мезонное и другие излучения).

По принципу Луи де Бройля любая частица имеет волновую природу, а любая волна — свойства кван­тования, т.е. свойства частиц.

Более важное деление на плотноионизирующие

— с большим массовым числом или высокой энергией (по закону Эйнштейна Е=тс2), например, а-излучение, и косвенноионизирующие — не имеющие заряда из­лучения (нейтронное, у- и рентгеновское излучения).

Мерой ионизирующих излучений является доза излучения.

1. Экспозиционная доза (X) — это доза рентге­новского или у-излучения, характеризующаяся по ионизирующему эффекту в воздухе.

Две единицы экспозиционной дозы:

1) системная (в системе СИ) — кулон на кило­грамм (Кл/кг)— один кулон электрических заря­дов в одном килограмме воздуха;

2) несистемная (или специальная) — рентген (Р), равная одной электростатической единице электри­чества (в системе CGSE) в одном кубическом санти­метре воздуха или 2,08х109 пар ионов в см3.

1 Кл/кг = 3876 Р

1 Р = 0,258 мКл/кг

2. Поглощенная доза (D) — энергия любого вида излучения, поглощенная массой любого вещества.

Используются также две единицы поглощенной дозы:

1) системная — Грэй (Гр), равная 1 джоулю энер­гии, поглощенному одним килограммом массы;

2) специальная — рад (р), равная 100 эрг энер­гии, поглощенным одним граммом массы. 1 Гр= 100 рад

3. Керма (Ке) отношение суммы кинетических энергий заряженных частиц, возникших под влияни­ем косвенноионизирующего излучения (не имеюще­го заряда) в определенном объеме к массе вещества в этом же объеме.

. ^1^2

m(V)

Используются две единицы для выражения кермы:

Гр^ = 100 рад ^

Керма эквивалентна экспозиционной дозе, но мо­жет характеризовать любое косвенноионизирующее излучение, а не только электромагнитное.

4. Эквивалентная доза (Н) — доза любого вида излучения при хроническом облучении биологичес­ких объектов, приравниваемая по биологическому эффекту к рентгеновскому или гамма-излучению.

Эквивалентная доза равна произведению погло­щенной дозы на коэффициент качества или взвеши­вающий коэффициент (что одно и то же) для любых видов излучения. Взвешивающий коэффициент для р-излучения = 1 (как у рентгеновского и у-излучений), для медленных (до 10 КэВ) или тепловых нейтронов и протонов = 5, для нейтронов с энергией от 10 до ЮОКэВ и от 2 до 20 МэВ =10, для а-излучения и ней­тронов с энергией от 100 КэВ до 2МэВ = 20. Это зна­чит, что от физически равных доз рентгеновского и а-излучения от последнего биологический эффект бу­дет в 20 раз больше.

Для выражения эквивалентных доз используются две единицы:

1) системная единица — Зиверт (Зв), равная Грэю, деленному на взвешивающий коэффициент;

2) специальная единица — Бэр, равная раду, де­ленному на взвешивающий коэффициент (здесь не произведение, а деление для уравнивания по весомос­ти поглощенной и эквивалентной доз).

<== предыдущая лекция | следующая лекция ==>
Шум и вибрация, их влияние на организм человека в условиях производства. Меры профилактики | Действие ионизирующей радиации на организм человека
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 1002; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.