Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лекция 5. 1. Понятия пользователя и групп пользователей

Служба DNS

 

План

1. Понятия пользователя и групп пользователей

2. Добавление учетной записи пользователя в ОС Windows

3. Добавление учетной записи группы.

4. Создание локальных групп и выбор членов группы.

5. Создание пользователей в ОС Linux

 

§1. Историческая справка

Систему доменных имен разработал в 1983 году Пол Мокапетрис. Тогда же было проведено первое успешное тестирование DNS, ставшей позже одним из базовых компонентов сети Internet. С помощью DNS стало возможным реализовать масштабируемый распределенный механизм, устанавливающий соответствие между иерархическими именами сайтов и числовыми IP-адресами.

В 1983 году Пол Мокапетрис работал научным сотрудником института информатики (Information Sciences Institute, ISI), входящего в состав инженерной школы университета Южной Калифорнии (USC). Его руководитель, Джон Постел, предложил Полу придумать новый механизм, устанавливающий связи между именами компьютеров и адресами Internet, - взамен использовавшемуся тогда централизованному каталогу имен и адресов хостов, который поддерживала калифорнийская компания SRI International.

"Все понимали, что старая схема не сможет работать вечно, - вспоминает Мокапетрис. - Рост Internet становился лавинообразным. К сети, возникшей на основе проекта ARPANET, инициированного Пентагоном, присоединялись все новые и новые компании и исследовательские институты".

Предложенное Мокапетрисом решение - DNS - представляло собой распределенную базу данных, которая позволяла организациям, присоединившимся к Internet, получить свой домен.

"Как только организация подключалась к сети, она могла использовать сколь угодно много компьютеров и сама назначать им имена", - подчеркнул Мокапетрис. Названия доменов компаний получили суффикс.com, университетов -.edu и так далее.

Первоначально DNS была рассчитана на поддержку 50 млн. записей и допускала безопасное расширение до нескольких сотен миллионов записей. По оценкам Мокапетриса, сейчас насчитывается около 1 млрд. имен DNS, в том числе почти 20 млн. общедоступных имен. Остальные принадлежат системам, расположенным за межсетевыми экранами. Их имена неизвестны обычным Internet-пользователям.

Новая система внедрялась постепенно, в течение нескольких лет. В это время ряд исследователей экспериментировали с ее возможностями, а Мокапетрис занимался в ISI обслуживанием и поддержанием стабильной работы "корневого сервера", построенного на мэйнфреймах компании Digital Equipment. Копии таблиц хостов хранились на каждом компьютере, подключенном к Internet, еще примерно до 1986 года. Затем начался массовый переход на использование DNS.

 

§2. Необходимость отображения имен сетевых узлов в IP-адреса

Компьютеры и другие сетевые устройства, отправляя друг другу пакеты по сети, используют IP-адреса. Однако пользователю (человеку) гораздо проще и удобнее запомнить некоторое символические имена сетевых узлов, чем четыре бессодержательных для него числа. Однако, если люди в своих операциях с сетевыми ресурсами будут использовать имена узлов, а не IP-адреса, тогда должен существовать механизм, сопоставляющий именам узлов их IP-адреса.

Есть два таких механизма - локальный для каждого компьютера файл hosts и централизованная иерархическая служба имен DNS.

Использование локального файла hosts и системы доменных имен DNS для разрешения имен сетевых узлов

На начальном этапе развития сетей, когда количество узлов в каждой сети было небольшое, достаточно было на каждом компьютере хранить и поддерживать актуальное состояние простого текстового файла, в котором содержался список сетевых узлов данной сети. Список устроен очень просто - в каждой строке текстового файла содержится пара "IP-адрес - имя сетевого узла". В системах семейства Windows данный файл расположен в папке %system root%\system32\drivers\etc (где %system root% обозначает папку, в которой установлена операционная система). Сразу после установки системы Windows создается файл hosts с одной записью 127.0.0.1 localhost.

С ростом сетей поддерживать актуальность и точность информации в файле hosts становится все труднее. Для этого надо постоянно обновлять содержимое этого файла на всех узлах сети. Кроме того, такая простая технология не позволяет организовать пространство имен в какую-либо структуру. Поэтому появилась необходимость в централизованной базе данных имен, позволяющей производить преобразование имен в IP-адреса без хранения списка соответствия на каждом компьютере. Такой базой стала DNS (Domain Name System) - система именования доменов, которая начала массовую работу в 1987 году.

Заметим, что с появлением службы DNS актуальность использования файла host совсем не исчезла, в ряде случаев использование этого файла оказывается очень эффективным.

 

§3. Служба DNS: пространство имен, домены

DNS - это иерархическая база данных, сопоставляющая имена сетевых узлов и их сетевых служб IP-адресам узлов. Содержимое этой базы, с одной стороны, распределено по большому количеству серверов службы DNS, а с другой стороны, является централизованно управляемым. В основе иерархической структуры базы данных DNS лежит доменное пространство имен (domain namespace), основной структурной единицей которого является домен, объединяющий сетевые узлы (хосты), а также поддомены. Процесс поиска в БД службы DNS имени некоего сетевого узла и сопоставления этому имени IP-адреса называется " разрешением имени узла в пространстве имен DNS ".

Служба DNS состоит из трех основных компонент:

Пространство имен DNS и соответствующие ресурсные записи (RR, resource record) - это сама распределенная база данных DNS;

Серверы имен DNS - компьютеры, хранящие базу данных DNS и отвечающие на запросы DNS-клиентов;

DNS-клиенты (DNS-clients, DNS-resolvers) -компьютеры, посылающие запросы серверам DNS для получения ресурсных записей.

 

§4. Пространство имен

Пространство имен DNSиерархическая древовидная структура, начинающаяся с корня, не имеющего имени и обозначаемого точкой ".". Схему построения пространства имен DNS лучше всего проиллюстрировать на примере сети Интернет.

 

 

Для доменов 1-го уровня различают 3 категории имен:

ARPA - специальное имя, используемое для обратного разрешения DNS (из IP-адреса в полное имя узла);

Общие (generic) имена 1-го уровня - 16 (на данный момент) имен, назначение которых приведено в табл;

Двухбуквенные имена для стран - имена для доменов, зарегистрированных в соответствующих странах (например, ru - для России, ua - для Украины, uk - для Великобритании и т.д.).

 

Имя домена Назначение
aero Сообщества авиаторов
biz Компании (без привязки к стране)
com Коммерческие организации, преимущественно в США (например, домен microsoft.com для корпорации Microsoft)
coop Кооперативы
edu Образовательные учреждения в США
gov Правительственные учреждения США
info Домен для организаций, предоставляющих любую информацию для потребителей
int международные организации (например, домен nato.int для НАТО)
mil Военные ведомства США
museum Музеи
name Глобальный домен для частных лиц
net Домен для Интернет-провайдеров и других организаций, управляющих структурой сети Интернет
org Некоммерческие и неправительственные организации, преимущественно в США
pro Домен для профессиональных объединений (врачей, юристов, бухгалтеров и др.)
job Кадровые агентства
travel Туроператоры

 

Для непосредственного отображения пространства имен в пространство IP-адресов служат т.н. ресурсные записи (RR, resource record). Каждый сервер DNS содержит ресурсные записи для той части пространства имен, за которую он несет ответственность (authoritative). Табл. содержит описание наиболее часто используемых типов ресурсных записей.

 

Тип ресурсной записи Функция записи Описание использования
A Host Address Адрес хоста, или узла Отображает имя узла на IP-адрес (например, для домена microsoft.com узлу с именем www.microsoft.com сопоставляется IP-адрес с помощью такой записи: www A 207.46.199.60)
CNAME Canonical Name (alias) Каноническое имя (псевдоним) Отображает одно имя на другое
MX Mail Exchanger Обмен почтой Управляет маршрутизацией почтовых сообщений для протокола SMTP
NS Name Server Сервер имен Указывает на серверы DNS, ответственные за конкретный домен и его поддомены
PTR Pointer Указатель Используется для обратного разрешения IP-адресов в имена узлов в домене in-addr.arpa
SOA Start of Authority Начальная запись зоны Используется для указания основного сервера для данной зоны и описания свойств зоны
SRV Service Locator Указатель на службу Используется для поиска серверов, на которых функционируют определенные службы (например, контроллеры доменов Active Directory или серверы глобального каталога)

 

Полное имя узла (FQDN, fully qualified domain name) состоит из нескольких имен, называемых метками (label) и разделенных точкой. Самая левая метка относится непосредственно к узлу, остальные метки - список доменов от домена первого уровня до того домена, в котором находится узел (данный список просматривается справа налево).

 

§5. Серверы имен DNS и DNS-клиенты

Серверы имен DNS (или DNS-серверы) – это компьютеры, на которых хранятся те части БД пространства имен DNS, за которые данные серверы отвечают, и функционирует программное обеспечение, которое обрабатывает запросы DNS-клиентов на разрешение имен и выдает ответы на полученные запросы.

DNS-клиен т – это любой сетевой узел, который обратился к DNS-серверу для разрешения имени узла в IP-адрес или, обратно, IP-адреса в имя узла.

§6. Служба DNS: домены и зоны

Как уже говорилось выше, каждый DNS-сервер отвечает за обслуживание определенной части пространства имен DNS.

Информация о доменах, хранящаяся в БД сервера DNS, организуется в особые единицы, называемые зонами (zones).

Зона - основная единица репликации данных между серверами DNS. Каждая зона содержит определенное количество ресурсных записей для соответствующего домена и, быть может, его поддоменов.

Операционные системы семейства Windows Server поддерживают следующие типы зон:

Стандартная основная (standard primary) - главная копия стандартной зоны; только в данном экземпляре зоны допускается производить какие-либо изменения, которые затем реплицируются на серверы, хранящие дополнительные зоны;

Стандартная дополнительная (standard secondary) - копия основной зоны, доступная в режиме "только - чтение", предназначена для повышения отказоустойчивости и распределения нагрузки между серверами, отвечающими за определенную зону; процесс репликации изменений в записях зон называется "передачей зоны" (zone transfer) (информация в стандартных зонах хранится в текстовых файлах, файлы создаются в папке "%system root%\system32\dns", имя файла, как правило, образуется из имени зоны с добавлением расширения файла ".dns"; термин "стандартная" используется только в системах семейства Windows);

Вся информация о зоне хранится в виде одной записи в базе данных Active Directory (такие типы зон могут существовать только на серверах Windows, являющихся контроллерами доменов Active Directory; в интегрированных зонах можно более жестко управлять правами доступа к записям зоны; изменения в записях зоны между разными экземплярами интегрированной зоны производятся не по технологии передачи зоны службой DNS, а механизмами репликации службы Active Directory);

Зона-заглушка (stub; только в Windows 2003) - особый тип зоны, которая для данной части пространства имен DNS содержит самый минимальный набор ресурсных записей (начальная запись зоны SOA, список серверов имен, отвечающих за данную зону, и несколько записей типа A для ссылок на серверы имен для данной зоны).

Рассмотрим на примере соотношение между понятиями домена и зоны. Проанализируем информацию, представленную.

Рис. 4.9.

В данном примере пространство имен DNS начинается с домена microsoft.com, который содержит 3 поддомена: sales.microsoft.com, it.microsoft.com и edu.microsoft.com (домены на рисунке обозначены маленькими горизонтальными овалами). Домен - понятие чисто логическое, относящееся только к распределению имен. Понятие домена никак не связано с технологией хранения информации о домене.

Зона - это способ представления информации о домене и его поддоменах в хранилище тех серверов DNS, которые отвечают за данный домен и поддомены. В данной ситуации, если для хранения выбрана технология стандартных зон, то размещение информации о доменах может быть реализовано следующим образом:

записи, относящиеся к доменам microsoft.com и edu.microsoft.com, хранятся в одной зоне в файле "microsoft.com.dns" (на рисунке зона обозначена большим наклонным овалом);

управление доменами sales.microsoft.com и it.microsoft.com делегировано другим серверам DNS, для этих доменов на других серверах созданы соответствующие файлы "sales.microsoft.com.dns" и "it.microsoft.com.dns" (данные зоны обозначены большими вертикальными овалами).

Делегирование управления - передача ответственности за часть пространства имен другим серверам DNS.

 

§7. Зоны прямого и обратного просмотра

Зоны, рассмотренные в предыдущем примере, являются зонами прямого просмотра (forward lookup zones). Данные зоны служат для разрешения имен узлов в IP-адреса. Наиболее часто используемые для этого типы записей: A, CNAME, SRV.

Для определения имени узла по его IP-адресу служат зоны обратного просмотра (reverse lookup zones), основной тип записи в "обратных" зонах - PTR. Для решения данной задачи создан специальный домен с именем in-addr.arpa. Для каждой IP-сети в таком домене создаются соответствующие поддомены, образованные из идентификатора сети, записанного в обратном порядке. Записи в такой зоне будут сопоставлять идентификатору узла полное FQDN-имя данного узла. Например, для IP-сети 192.168.0.0/24 необходимо создать зону с именем "0.168.192.in-addr.arpa". Для узла с IP-адресом 192.168.0.10 и именем host.company.ru в данной зоне должна быть создана запись "10 PTR host.company.ru".

 

§8. Алгоритмы работы итеративных и рекурсивных запросов DNS

Все запросы, отправляемые DNS-клиентом DNS-серверу для разрешения имен, делятся на два типа:

итеративные запросы (клиент посылает серверу DNS запрос, в котором требует дать наилучший ответ без обращений к другим DNS-серверам);

рекурсивные запросы (клиент посылает серверу DNS запрос, в котором требует дать окончательный ответ даже если DNS-серверу придется отправить запросы другим DNS-серверам; посылаемые в этом случае другим DNS-серверам запросы будут итеративными).

Обычные DNS-клиенты (например, рабочие станции пользователей), как правило, посылают рекурсивные запросы.

Рассмотрим на примерах, как происходит взаимодействие DNS-клиента и DNS-сервера при обработке итеративных и рекурсивных запросов.

Допустим, что пользователь запустил программу Обозреватель Интернета и ввел в адресной строке адрес http://www.microsoft.com. Прежде чем Обозреватель установит сеанс связи с веб-сайтом по протоколу HTTP, клиентский компьютер должен определить IP-адрес веб-сервера. Для этого клиентская часть протокола TCP/IP рабочей станции пользователя (так называемый resolver) сначала просматривает свой локальный кэш разрешенных ранее имен в попытке найти там имя www.microsoft.com. Если имя не найдено, то клиент посылает запрос DNS-серверу, указанному в конфигурации TCP/IP данного компьютера (назовем данный DNS-сервер "локальным DNS-сервером"), на разрешение имени www.microsoft.com в IP-адрес данного узла. Далее DNS-сервер обрабатывает запрос в зависимости от типа запроса.

 

Вариант 1 (итеративный запрос).

Если клиент отправил серверу итеративный запрос (напомним, что обычно клиенты посылают рекурсивные запросы), то обработка запроса происходит по следующей схеме:

сначала локальный DNS-сервер ищет среди зон, за которые он отвечает, зону microsoft.com;

если такая зона найдена, то в ней ищется запись для узла www; если запись найдена, то результат поиска сразу же возвращается клиенту;

в противном случае локальный DNS-сервер ищет запрошенное имя www.microsoft.com в своем кэше разрешенных ранее DNS-запросов;

если искомое имя есть в кэше, то результат поиска возвращается клиенту; если локальный DNS-сервер не нашел в своей базе данных искомую запись, то клиенту посылается IP-адрес одного из корневых серверов DNS;

клиент получает IP-адрес корневого сервера и повторяет ему запрос на разрешение имени www.microsoft.com;

корневой сервер не содержит в своей БД зоны "microsoft.com", но ему известны DNS-серверы, отвечающие за зону "com", и корневой сервер посылает клиенту IP-адрес одного из серверов, отвечающих за эту зону;

клиент получает IP-адрес сервера, отвечающего за зону "com", и посылает ему запрос на разрешение имени www.microsoft.com;

сервер, отвечающий за зону com, не содержит в своей БД зоны microsoft.com, но ему известны DNS-серверы, отвечающие за зону microsoft.com, и данный DNS-сервер посылает клиенту IP-адрес одного из серверов, отвечающих уже за зону microsoft.com;

клиент получает IP-адрес сервера, отвечающего за зону microsoft.com, и посылает ему запрос на разрешение имени www.microsoft.com;

сервер, отвечающий за зону microsoft.com, получает данный запрос, находит в своей базе данных IP-адрес узла www, расположенного в зоне microsoft.com, и посылает результат клиенту;

клиент получает искомый IP-адрес, сохраняет разрешенный запрос в своем локальном кэше и передает IP-адрес веб-сайта программе Обозреватель Интернета (после чего Обозреватель устанавливает связь с веб-сайтом по протоколу HTTP).

 

Вариант 2 (рекурсивный запрос).

Если клиент отправил серверу рекурсивный запрос, то обработка запроса происходит по такой схеме:

сначала локальный DNS-сервер ищет среди зон, за которые он отвечает, зону microsoft.com; если такая зона найдена, то в ней ищется запись для узла www; если запись найдена, то результат поиска сразу же возвращается клиенту;

в противном случае локальный DNS-сервер ищет запрошенное имя www.microsoft.com в своем кэше разрешенных ранее DNS-запросов; если искомое имя есть в кэше, то результат поиска возвращается клиенту;

если локальный DNS-сервер не нашел в своей базе данных искомую запись, то сам локальный DNS-сервер выполняет серию итеративных запросов на разрешение имени www.microsoft.com, и клиенту посылается либо найденный IP-адрес, либо сообщение об ошибке.

 

§9. Реализация службы DNS в системах семейства Windows Server

Главная особенность службы DNS в системах семейства Windows Server заключается в том, что служба DNS разрабатывалась для поддержки службы каталогов Active Directory. Для выполнения этой функции требуются обеспечение двух условий:

поддержка службой DNS динамической регистрации (dynamic updates);

поддержка службой DNS записей типа SRV.

Служба DNS систем Windows Server удовлетворяет обоим условиям, и реализация служб каталогов Active Directory может быть обеспечена только серверами на базе систем Windows Server.

 

<== предыдущая лекция | следующая лекция ==>
Лекция 4. Администрирование сетевых операционных систем | Понятие и признаки судебной власти
Поделиться с друзьями:


Дата добавления: 2014-01-05; Просмотров: 447; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.