КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Поверхности второго порядка
Поверхностью второго порядка называется поверхность S, общее уравнение которой в декартовой прямоугольной системе координат имеет вид: (15.22) где коэффициенты при одночленах второй степени одновременно не равны нулю. Существует девять типов невырожденных поверхностей, уравнения которых с помощью преобразования координат могут быть приведены к одному из следующих видов. Эти уравнения определяют тип поверхности и называются каноническими уравнениями. 1. Эллипсоид: (рис. 15.1).
Рис. 15.1
2. Конус второго порядка: (рис. 15.2).
Рис. 15.2
3. Гиперболоиды
Рис. 15.3 Рис. 15.4
4. Параболоиды
Рис. 15.5 Рис. 15.6
5. Цилиндры
Рис. 15.7 Рис. 15.8
3) параболический: (рис. 15.9).
Рис. 15.9
Основным методом исследования формы поверхности является метод параллельных сечений, который состоит в следующем. Поверхность пересекается координатными плоскостями и им параллельными, а затем на основании вида полученных в сечениях линий делается вывод о типе поверхности. Таким образом можно изучать основные геометрические свойства невырожденных поверхностей второго порядка на основе их канонических уравнений. При этом, когда в общем уравнении поверхности коэффициенты приведение к каноническому виду осуществляется с помощью метода выделения полных квадратов. В определенных случаях уравнение (15.22) поверхности может быть приведено к уравнениям, задающим, так называемые, вырожденные поверхности. Приведем примеры таких случаев: – пустое множество точек (мнимый эллипсоид); – точка (0, 0, 0); – пустое множество точек (мнимый эллиптический цилиндр); – прямая (ось Oz); – пара пересекающихся плоскостей; – пара параллельных плоскостей; – пустое множество точек; – плоскость (пара совпадающих плоскостей).
Задания
Дата добавления: 2014-01-06; Просмотров: 691; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |