Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Самофокусировка света в нелинейной среде

Явление самофокусировки световых пучков было обнаружено в 1965. Оказалось, что мощный световой пучок, распространяясь в среде, во многих случаях не только не испытывает обычной, так называемой дифракционной расходимости, а напротив, самопроизвольно сжимается. Явление самофокусировки электромагнитных волн в общей форме было предсказано в 1962 Г. А. Аскарьяном (СССР). Оптические эксперименты были стимулированы теоретическими работами Ч. Таунса с сотрудниками (США, 1964). Большой вклад в понимание природы явления внесли работы А. М. Прохорова с сотрудниками.

При достаточно большой (но вполне умеренной для современной лазерной техники) мощности светового пучка, превышающей некоторое критическое значение Р кр, в среде вместо обычной дифракционной расходимости первоначально параллельного пучка наблюдается его самосжатие. Величина Р кр различна для разных сред; для ряда органических жидкостей Р кр ~ 10—50 кВт, в некоторых кристаллах и оптических стеклах Р кр не превышает нескольких Вт.

Иногда, например, при распространении излучения мощных импульсных лазеров в жидкостях, это самосжатие носит характер "схлопывания" пучка, которое сопровождается настолько быстрым нарастанием светового поля, что это может вызвать световой пробой, фазовые переходы и другие изменения состояния вещества. В других случаях, например, при распространении излучения газовых лазеров непрерывного действия в стеклах, нарастание поля также заметно, хотя и не является столь быстрым. Самосжатие в некотором смысле похоже на фокусировку пучка обычной линзой. Однако существенные различия наблюдаются за фокальной точкой; самосфокусированный пучок может образовывать квазистационарные нити ("волноводное" распространение), последовательность фокальных точек и т.п.

Явление самофокусировки обусловлено тем, что в сильном световом поле изменяется показатель преломления среды (например, за счёт нагрева стекла лазерным излучением). Если знак изменения показателя преломления таков, что в области, занятой пучком, он возрастает, эта область становится оптически более плотной, и периферийные лучи отклоняются к центру пучка. Такая нелинейная рефракция может быть столь существенной (её "сила" нарастает вместе с концентрацией поля), что практически полностью подавляет дифракционные эффекты.

Обратный эффект — самодефокусировка — возникает, если среда в области, занятой световым пучком, из-за зависимости показателя преломления от интенсивности становится оптически менее плотной (n 2 < 0). В этом случае мощный лазерный пучок расходится гораздо быстрее, чем пучок малой интенсивности. Нелинейные волновые явления типа самофокусировки и самодефокусировки, в которых средние частота и волновое число k = ωn/c почти не изменяются, называются самовоздействием волн. Наряду с самовоздействием волн, модулированных в пространстве, в нелинейной оптике изучается также самовоздействие волн, модулированных во времени.

Распространение светового импульса в среде с показателем преломления вида n = n 0 + n 2 E 2 сопровождается искажением его формы и фазовой модуляцией. В результате возникает сильное уширение спектра лазерного импульса. Ширина спектра излучения на выходе из среды в сотни и тысячи раз превышает ширину спектра на входе.

Эффекты самовоздействия определяют основные черты поведения мощных световых пучков в большинстве сред, включая и активные среды самих лазеров. В частности, лавинное нарастание напряженности светового поля при самофокусировке вызывает во многих случаях оптический пробой среды.

Интересным вопросом в явлении самофокусировки является поведение светового пучка за фокальной точкой. А. М. Прохоров с сотрудниками обратили внимание на существенную роль движения фокальных точек при самофокусировке. В реальном лазерном импульсе мощность изменяется во времени и соответственно изменяется во времени фокальная длина нелинейной линзы. В результате возникает движущийся фокус. Скорость его движения может достигать 109 см/сек. Учёт быстрого движения фокусов в сочетании с аберрациями нелинейной линзы во многих случаях позволяет построить полную теорию явления самофокусировки.

В среде с вещественным нелинейным показателем преломления волновые пакеты и пучки испытывают фазовую самомодуляцию, которая за счёт дисперсии и рефракции сильно изменяет форму временной или пространственной модуляции огибающей.

В результате частотный спектр пакета сильно уширяется. При n 2 > 0 частота увеличивается от фронта импульса к хвосту. В среде с нормальной дисперсией групповой скорости это приводит, очевидно, к более быстрому расплыванию пакета, чем в линейной среде. Если дисперсия аномальна, спектральные ВЧ-компоненты, группирующиеся на хвосте импульса, догоняют НЧ-компоненты, располагающиеся на фронте; при этом частотно-модулированный импульс сжимается - возникает самосжатие, "самофокусировка во времени". Во многом аналогичные явления возникают и при распространении волновых пучков. Колоколообразное распределение огибающей приводит к фазовой самомодуляции в пространстве; в рассматриваемом случае n 2> 0 она приводит к нелинейной рефракции и самофокусировке пучка, т. к. фазовая скорость света в центре пучка u ф = с/(п 0+ n 2I) меньше, чем на периферии. Следует подчеркнуть, что, в отличие от "линейной" фокусировки света с помощью линзы, самофокусировка носит "лавинный" характер, характер неустойчивости. Действительно, вызванная фазовой самомодуляцией поперечная неоднородность поля усиливает нелинейную рефракцию и т. д. Самосжатие, самофокусировку можно интерпретировать и на спектральном языке как результат последовательных четырёхволновых взаимодействий, приводящих к "лавинному" уширению частотного или углового спектров.

 

<== предыдущая лекция | следующая лекция ==>
Параметрические процессы. Параметрическое усиление света | Вынужденное рассеяние света
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 877; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.