![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)
|
Облигации с выплатой процентов (купонные облигации)
Облигации без выплаты процентов (бескупонные или дисконтные облигации) По бескупонным облигациям инвестор получает доход как разницу между номинальной стоимостью облигации и ценой ее покупки. Курс такой облигации, определяемый как отношение рыночной цены облигации (цены приобретения) к номинальной стоимости облигации, всегда меньше 100. Вычислить показатель полной доходности (ставки помещения) по бескупонным облигациям можно на основании расчета ее стоимости. Приравняем современную стоимость номинала к цене приобретения:
где N – номинальная стоимость облигации; vn=(1+r)-n – дисконтный (учетный) или дисконтирующий множитель; r – ставка наращения процентов (процентная ставка) или ставка помещения облигации; Р – рыночная цена облигации (цена приобретения); К – курс облигации,, n – срок выкупа облигации (число лет до погашения). , откуда
, откуда
Если бескупонная облигация не более года, показатель n является дробным числом и используется упрощенный метод расчета показателя доходности к погашению:
где Т – количество денй в году; t – количество дней от даты покупки до даты погашения облигации. Сомножитель показывает реальную доходность, которую получит инвестор за период владения облигацией. При помощи сомножителя T/t полученная доходность приводится к годовой размерности. Если облигация продается до ее погашения, то доходность вложений за период владения облигацией определяется по формуле:
где Рп – цена покупки облигации; Рпр – цена продажи облигации; tвл – число дней от даты покупки до даты продажи.
Купонные облигации, выкупаемые по номиналу (облигации с периодической выплатой процентов и погашением номинала в конце срока)
Этот вид облигаций получил наибольшее распространение в современной практике. Текущая доходность облигации рассчитывается по формуле:
где i – объявленная норма годового дохода (купонная ставка процента); N – номинал облигации; Р – рыночная цена облигации; К – курс облигации,. Для определения полной доходности необходимо современную стоимость всех поступлений приравнять текущей цене облигации. Дисконтированная величина номинала равна N*vn, где - коэффициент дисконтирования, N – номинал облигации. Поскольку поступления по купонам представляют собой постоянный аннуитет постнумерандо, то член такой ренты равен i*N и современная ее стоимость составит: - если купоны выплачиваются ежегодно: i*N*FM4(r,n) - если купоны выплачиваются р раз в год (по ставке i/р за интервал 1/р) i*N*FM4(r,n)(р) где i – годовой проценты выплат по купонам. В итоге получим следующие равенства: - для облигации с годовыми купонами: Р=N*vn + i*N*FM4(r,n) где - коэффициент дисконтирования аннуитета. Разделив на N обе части уравнения находим, что
где К – курс облигации, К=Р/N. - для облигации с погашением купонов по полугодиям и поквартально: (р) Ставка эффективной доходности рассчитывается с помощью метода интерполяции. Оценка точного значения процентной ставки r с помощью метода линейной интерполяции осуществляется по формуле: , где r/ и r// - предполагаемые нижнее и верхнее значения ставки полной доходности, ограничивающие интервал, в пределах которого, как ожидается, находится неизвестное значение ставки; К/ и К// - расчетные значения курса соответственно для ставок r/ и r//. Для определения интервала значений r/ и r// в пределах которого находится неизвестное значение ставки r можно определить приближенное значение ставки эффективной доходности:
Купонные облигации с периодической выплатой процентов и с выкупной ценой, отличающейся от номинала
В этом случае проценты начисляются на сумму номинала, а прирост капитала равен RV-P, где PV – выкупная цена облигации. Отсюда следует, что при оценке ставки эффективной доходности необходимо внести соответствующие коррективы в приведенные выше формулы. Получим: s w:val="24"/><w:lang w:val="EN-US"/></w:rPr><m:t>n</m:t></m:r></m:sup></m:sSup><m:r><w:rPr><w:rFonts w:ascii="Cambria Math" w:h-ansi="Cambria Math"/><wx:font wx:val="Cambria Math"/><w:i/><w:sz w:val="24"/><w:sz-cs w:val="24"/><w:lang w:val="EN-US"/></w:rPr><m:t>+i*N*FM4(r,n)</m:t></m:r></m:oMath></m:oMathPara></w:p><w:sectPr wsp:rsidR="00000000"><w:pgSz w:w="12240" w:h="15840"/><w:pgMar w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></w:body></w:wordDocument>">
Приближенное значение ставки полной доходности:
Купонные облигации с выплатой процентов и номинала в конце срока Проценты начисляются за весь срок и выплачиваются одной суммой вместе с номиналом. Купонного дохода нет. Следовательно, текущую доходность условно можно считать нулевой, т.к. соответствующие проценты получают в конце срока. Для получения полной доходности приравняем современную стоимость дохода к цене облигации. (1+i)n*N*vn=P или, где i - объявленная норма годового дохода (купонная ставка процента); n – срок выкупа облигации; N – номинальная стоимость облигации; vn=(1+r)-n – дисконтный (учетный) или дисконтирующий множитель; Р – рыночная цена облигации; К – курс облигации,.
Если курс облигации меньше 100, то r>q. Дополнительно: Банковское дело: учебник / Под ред. Д.э.н., поф. Г.Г. Коробовой. – М: Экономистъ, 2006. – С. 405-435. 5. Инвестиционные операции – размещение средств в виде срочных вкладов в других кредитных организациях Виды активных операций по уровню доходности: - операции, приносящие доход; - операции, не приносящие дохода (операции с наличностью, операции по корреспондентскому счету, отчисление средств в резервный фонд банка России, выдача беспроцентных ссуд, прочее)
Дата добавления: 2014-01-07; Просмотров: 249; Нарушение авторских прав?; Мы поможем в написании вашей работы! Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет |