Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лазерные диоды

Светоизлучающие диоды

Благодаря своей простоте и низкой стоимости, светодиоды распространены значительно шире, чем лазерные диоды.
Принцип работы светодиода основан на излучательной рекомбинации носителей заряда в активной области гетерогенной структуры при пропускании через нее тока (Рисунок 4.2 а). Носители заряда – электроны и дырки – проникают в активный слой (гетеропереход) из прилегающих пассивных слоев (р- и n-слоя) вследствие подачи напряжения на р-n структуру и затем испытывают спонтанную рекомбинацию, сопровождающуюся излучением света.
Длина волны излучения λ (мкм) связана с шириной запрещенной зоны активного слоя Eg (эВ) законом сохранения энергии λ=1,24/Eg (Рисунок 4.2 б).
Показатель преломления активного слоя выше показателя преломления ограничивающих пассивных слоев, благодаря чему рекомбинационное излучение может распространяться в пределах активного слоя, испытывая многократное отражение, что значительно повышает КПД источника излучения.

Рисунок 5.2 Двойная гетероструктура: а) гетероструктура; б) энергетическая диа-грамма при прямом смещении

 

Гетерогенные структуры могут создаваться на основе разных полупроводниковых материалов. Обычно в качестве подложки используются GaAs и InP. Соответствующий композиционный состав активного материала выбирается в зависимости от длины волны излучения и создается посредством напыления на подложку (Таблица 4.1).
Длину волны излучения λ0 определяют как значение, соответствующее максимуму спектрального распределения мощности, а ширину спектра излучения Δλ0,5 – как интер-вал длин волн, в котором спектральная плотность мощности составляет половину максимальной.


Таблица 5.1 Композиционные материалы, используемые для создания источников излучения различных длин волн

Два главных конструктивных отличия есть у лазерного диода по сравнению со светодиодом. Первое, лазерный диод имеет встроенный оптический резонатор. Второе, лазерный диод работает при значительно больших значениях токов накачки, чем светодиод, что позволяет при превышении некоторого порогового значения получить режим индуцированного излучения. Именно такое излучение характеризуется высокой когерентностью, благодаря чему лазерные диоды имеют значительно меньше ширину спектра излучения (1-2 нм) против 30-50 нм у светодиодов (Рисунок 4.1).
Зависимость мощности излучения от тока накачки описывается ватт-амперной характеристикой лазерного диода. При малых токах накачки лазер испытывает слабое спонтанное излучение, работая как малоэффективный светодиод. При превышении некоторого порогового значения тока накачки Ithres, излучение становится индуцированным, что приводит к резкому росту мощности излучения и его когерентности (Рисунок 4.3).

Рисунок 5.3 Ватт-амперные характеристики: 1 – лазерного диода; 2 – светодиода

Мощность выходного излучения Pout или выходная мощность излучения светодиода (output power) отражает мощность вводимого в волокно излучения. Наряду с традиционной единицей измерения Вт она может измеряться в дБм. Мощности Pout, измеренной в мВт (10-3 Вт), будет соответствовать мощность Pout=10lgPout (дБм). Использование единицы измерения дБм упрощает энергетический расчет бюджета линий. Мощность излучения, приводящаяся в характеристиках оптического передатчика, может варьироваться в некотором диапазоне. В таких случаях указывают диапазон мощности излучения (output power range). Например, -19/-14 дБм означает, что Pout min=-19 дБм, a Pout max=-14 дБм.
В магистральных ВОЛС используются два окна 1,3 и 1,55 мкм. Поскольку наименьшее затухание в волокне достигается в окне 1,55 мкм, на сверхпротяженных безретрансляционных участках (L=100 км) эффективней использовать оптические передатчики именно с этой длиной волны. В то же время на многих магистральных ВОЛС в состав ВОК входят только ступенчатые одномодовые волокна, имеющие минимум хроматической дисперсии в окрестности 1,3 мкм (волокон со смещенной дисперсией нет). На длине волны 1,55 мкм удельная хроматическая дисперсия у SMF составляет 17 пс/нмкм. А по-скольку полоса пропускания обратно пропорциональна ширине спектра излучения, то увеличить полосу пропускания можно только уменьшая ширину спектра излучения лазе-ра. Из таблицы () видно, что при ширине спектра Δλ=4 нм полоса пропускания на 100 км составляет 63 МГц, а при Δλ=0,2 нм соответственно 1260 МГц. Итак, для того чтобы оптические передатчики на длине волны 1,55 мкм могли в равной степени использоваться на протяженной линии не только с одномодовым волокном со смещенной дисперсией (DSF), но и со ступенчатым волокном (SMF), необходимо делать ширину спектра излучения передатчиков как можно меньше.
Четыре основных типа лазерных диодов получили наибольшее распространение: с резонатором Фабри-Перо; с распределенной обратной связью; с распределенным брэгговским отражением; с внешним резонатором.
Лазерные диоды с резонатором Фабри-Перо (FP лазеры, Fabry-Perot). Резонатор в таком лазерном диоде образуется торцевыми поверхностями, окружающими с обеих сторон гетерогенный переход. Одна из поверхностей отражает свет с коэффициентом отражения, близким к 100%, другая является полупрозрачной, обеспечивая, таким образом, выход излучения наружу.
На рисунке (Рисунок 4.1 б) показан спектр излучения промышленного лазерного диода с использованием резонатора Фабри-Перо. Как видно из рисунка, наряду с главным пиком, в котором сосредоточена основная мощность излучения, существуют побочные максимумы. Причина их возникновения связана с условиями образования стоячих волн. Для усиления света определенной длины волны необходимо выполнение двух условий. Первое, длина волны должна удовлетворять соотношению 2D=Nλ, где D – диаметр резонатора Фабри-Перо, а N – некоторое целое число. Второе, длина волны должна попадать в диапазон, в пределах которого свет может усиливаться индуцированным излучением. Если этот диапазон достаточно мал, то имеет место одномодовый режим с шириной спектра меньше 1 нм. В противном случае в область Δλ0,5 могут попасть два или более соседних максимумов, что соответствует многомодовому режиму с шириной спектра от одного до нескольких нм. FP лазер имеет далеко не самые высокие технические характеристики, но для тех приложений, где не требуется очень высокая скорость передачи данных, он, в силу более простой конструкции, наилучшим образом подходит с точки зрения цена-эффективность.
Следует отметить, что даже в том случае, когда соседние максимумы малы, то есть когда реализуется одномодовый режим излучения и Δλ, мало, с ростом скорости передачи у FP лазера наблюдается перераспределение мощности в модах, которое приводит к паразитному эффекту – динамическому уширению спектра Δλ, (до 10 нм при частоте модуляции 1-2 ГГц).
Этот эффект отсутствует у перечисленных трех других более совершенных типов лазерных диодов, отличающихся способом организации оптического резонатора, и являющихся в некоторой степени модернизацией простого резонатора Фабри-Перо.
Лазерные диоды с распределенной обратной связью (DFB лазер) и с распре-деленным брэгговским отражением (DBR лазер). Резонаторы у этих двух довольно схожих типов представляют собой модификацию плоского резонатора Фабри-Перо, в которой добавлена периодическая пространственная модуляционная структура. В DFB лазерах периодическая структура совмещена с активной областью (Рисунок 4.4 а), а в DBR лазерах периодическая структура вынесена за пределы активной области (Рисунок 4.4 б). Периодическая структура влияет на условия распространения и характеристики излучения. Так, преимуществами DFB и DBR лазеров по сравнению с FP лазером являются: уменьшение зависимости длины волны лазера от тока инжекции и температуры, высокая стабильность одномодовости и практически 100-процентная глубина модуляции. Температурный коэффициент Δλ/ΔТ для FP лазера порядка 0,5-1 нм/°С, в то время как для DFB лазера порядка 0,07-0,09 нм/°С. Основным недостатком DFB и DBR лазеров является сложная технология изготовления и, как следствие, более высокая цена.
Лазерный диод с внешним резонатором (ЕС лазер). В ЕС лазерах один или оба торца покрываются специальным слоем, уменьшающим отражение, и соответственно, одно или два зеркала ставятся вокруг активной области полупроводниковой структуры. На рисунке (Рисунок 4.4 в) показан пример ЕС лазера с одним внешним резонатором. Антиотражательное покрытие уменьшает коэффициент отражения примерно на четыре по-рядка, в то время как другой торец активного слоя отражает до 30% светового потока благодаря френелевскому отражению. Зеркало, как правило, совмещает функции дифракционной решетки. Для улучшения обратной связи между зеркалом и активным эле-ментом устанавливается линза.
Увеличивая или уменьшая расстояние до зеркала, а также одновременно разворачивая зеркало-решетку, — это эквивалентно изменению шага решетки – можно плавно из-менять длину волны излучения, причем диапазон настройки достигает 30 нм. В силу это-го, ЕС лазеры являются незаменимыми при разработке аппаратуры волнового уплотне-ния и измерительной аппаратуры для ВОЛС. По характеристикам они схожи с DFB и DBR лазерами.

<== предыдущая лекция | следующая лекция ==>
Электронные компоненты систем оптической связи | Основные элементы ПОМ
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1286; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.