Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геоинформационные системы. Автоматизированные системы научных исследований (АСНИ) предназначены для автоматизации научных экспериментов

Автоматизированные системы научных исследований (АСНИ) предназначены для автоматизации научных экспериментов, а также для осуществления моделирования исследуемых объектов, явлений и процессов, изучение которых традиционными средствами затруднено или невозможно.

Автоматизированные системы научных исследований

Пример

КОМПАС-3D является системой компьютерного черчения, которая предназначена для создания геометрических чертежей, а также чертежей деталей и механизмов различной сложности. КОМПАС-3D позволяет создавать трехмерные модели объектов и рассматривать их в различных проекциях.

 



Компьютеры в АСНИ решают следующие задачи:

  • управление экспериментом;
  • подготовка отчетов и документации;
  • поддержание базы экспериментальных данных и др.

 

В результате применения АСНИ возникают следующие положительные моменты:

  • в несколько раз сокращается время проведения исследования;
  • увеличивается точность и достоверность результатов;
  • усиливается контроль за ходом эксперимента;
  • сокращается количество участников эксперимента;
  • повышается качество и информативность эксперимента за счет увеличения числа контролируемых параметров и более тщательной обработки данных;
  • результаты экспериментов выводятся оперативно в наиболее удобной форме — графической или символьной (например, значения функции многих переменных выводятся средствами машинной графики в виде так называемых «горных массивов»). На экране одного графического монитора возможно формирование целой системы приборных шкал (вольтметров, амперметров и др.), регистрирующих параметры экспериментального объекта.

 

Особый класс программного обеспечения в управлении и фундаментальных исследованиях образуют немногочисленные, но исключительно мощные и сложные геоинформационные системы (ГИС).

По названию (гео – Земля + информация), Вы, наверное, поняли, что речь идет об инструментах геофизиках, геологов, географов, геодезистов (всюду – гео!).

 

Основная задача ГИС – обеспечить наглядное представление различных «параметров» земной поверхности в форме структурированных карт, которые можно использовать и для научных исследований, и для оптимизации транспортных потоков, размещения сетей деловых объектов, даже оптимизации военных операций.

 

Слово «параметры» мы взяли в кавычки, поскольку в этой роли могут выступать как физико-химические величины (например, уровень загрязнения или напряженность магнитного поля), так и рукотворные объекты (магазины, предприятия и т.п.).

ГИС широко используются в деловой сфере – в бизнесе, городских службах, картографии.

В сочетании со специализированными программно-аппаратными средствами эти системы помогают решать задачи, сама постановка которых немыслима без вычислительной техники. В частности, с их помощью можно обрабатывать результаты измерений различных физико-химических параметров земной поверхности и атмосферы, получаемых с самолетов и спутников Земли в сотнях и тысячах точек. Эти измерения помогают в составлении различных карт Земли, в поиске полезных ископаемых, в исследованиях причин землетрясений, в экологической защите планеты.

Широкое распространение получили интерактивные географические карты (мира, различных частей света, России, Москвы и других городов). Такие карты обычно реализуются с использованием векторной графики и поэтому позволяют пользователю выбирать нужный ему масштаб.

Карты связаны с базами данных, которые хранят всю необходимую информацию об объектах, изображенных на картах. Пользователь может осуществлять поиск необходимого ему объекта на карте с помощью поисковой системы. Например, для того чтобы найти дом на интерактивной карте Москвы требуется ввести название улицы и номер дома.

 

Геоинформационные системы позволяют с помощью географических карт представлять статистическую информацию о различных регионах. Хранящаяся в базах данных информация о количестве населения, развитие промышленности, загрязнении огружающей среды и др. может быть связана с географическими картами и отображена на них. Отображение информации может производиться различными способами: закрашиванием регионов различными цветами, построением диаграмм и т.д.

<== предыдущая лекция | следующая лекция ==>
Системы автоматизированного проектирования САПР | Области применения ИС
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 499; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.