Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Свойства степенных рядов




Пусть функция является суммой степенного ряда

,

интервал сходимости которого .

В этом случае говорят, что на интервале функция разлагается в степенной ряд (или в ряд по степеням х).

Имеют место две теоремы о свойствах степенных рядов.

8. Если функция на интервале разлагается в степенной ряд, то она дифференцируема на этом интервале и ее производная может быть найдена почленным дифференцированием ряда, т.е.:

.

Аналогично могут быть вычислены производные любого порядка функции . При этом соответствующие ряды имеют тот же интервал сходимости, что и степенной ряд.

9. Если функция на интервале разлагается в степенной ряд, то она интегрируема в интервале и интеграл от нее может быть вычислен почленным интегрированием степенного ряда, т. е., если , то:

+

+ + … + +....

Теорема. Если функция на интервале разлагается в степенной ряд:

,

тоэто разложение единственно.

Пусть функция бесконечное число раз дифференцируема в точке , тогда в окрестности этой точки функция раскладывается в степенной ряд:

,

называемый рядом Тейлора.

При функция разлагается в степенной ряд:

,

называемый рядом Маклорена.

Для того чтобы ряд Маклорена сходился на и имел своей суммой функцию , необходимо и достаточно, чтобы на остаточный член формулы Маклорена стремился к нулю при , т.е. для любого .

Рассмотрим разложения в ряд Маклорена некоторых элементарных функций:

;

;

;

Лекция 45




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 326; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.