Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Транспорт липидов

Ресинтез жирных кислот в стенке кишечника.

Из всосавшихся продуктов гидролиза в стенке кишечника происходит ресинтез специфичных для данного организма. Триглицеридов и фосфоглицеридов. При этом происходит последовательное присоединение к моноглицеридам активированных жирных кислот.

При синтезе фосфолипидов глицерин фосфорилируется фосфатглицеролкиназой, превращается в глицерол-3-фосфат, который затем взаимодействует с активированными жирными кислотами, образуя фосфатидную кислоту.

Ресинтезированные триацилглицерины, фосфолипиды, холестерин и его эфиры в эпителиальных клетках кишечника соединяются |с небольшим количеством белка и образуют хиломикроны (ХМ- частицы диаметром d=0,1-5 мкм). ХМ поступают в лимфотическую систему, а оттуда – через грудной проток в кровь. Из-за большого размера хиломикроны не могут сразу всосаться в кровеносные капилляры. В хиломикронах белки и полярные части фосфолипидов расположены снаружи, а триглицериды и холестерин внутри.

По крови хиломикроны транспортируются к печени и жировой ткани. На поверхности клеток под действием фермента липопротеиназа происходит их гидролиз с образованием глицерина и жирных кислот. Часть жирных кислот поступает в клетки жировой ткани и там откладываются в виде триглицеридов, а часть образует комплексы с альбуминами сыворотки крови и оком крови разносится к тканям. В клетках тканей комплекс распадается и жирные кислоты подвергаются биологическому окислению, обеспечивая клетку энергией, либо используется для синтеза триглицеридов жировой ткани, а также липопротеинов, фосфолипидов, стеридов и др. соединений.

Жирные кислоты, как и глюкоза, является основным энергетическим материалом в организме. При повышенных энергозатратах происходит мобилизация жирных кислот из жировых депо. При этом триглицериды резервного жира последовательно расщепляются под действием фермента триглицеридлипаза (активизируется адреналином и др. гормонами), ди- и моноглицеридлипазами с образованием глицерина и жирных кислот, которые в виде комплексов с альбуминами кровью переносятся к тканям где подвергаются процессам распада или биосинтеза.

 

Тема: ОРГАНИЧЕСКИЕ КИСЛОТЫ.

Органические кислоты широко распространены в ра­стительном мире. Они содержатся во всех растениях и часто накапливаются в больших количествах в семенах, стеблях, листьях, корнях или плодах. Органические кис­лоты образуются в результате многих процессов обмена веществ в растениях, среди которых основным следует считать дыхание.

Органические кислоты участвуют в построении моле­кул ряда сложных веществ — жиров, производных саха­ров, витаминов и других биологически активных соеди­нений. В растениях кислоты находятся в свободном со­стоянии, а также в виде кислых и нейтральных солей. Во многих плодах и ягодах большая часть приходится на свободные кислоты и лишь незначительное количест­во представлено солями. В некоторых растениях (напри­мер, щавеле, бегонии, суккулентах) много свободных кислот содержится и в листьях. В связанном состоянии органические кислоты обнаружены в больших количест­вах в листьях бобовых растений, где на их долю может приходиться до 25% сухого вещества.

При определениях содержания органических кислот или их солей следует различать: 1) общую кислотность, или общее содержание кислоты, понимая под этим об­щее количество анионов и недиссоциированных молекул кислоты; 2) концентрацию водородных ионов, часто обозначаемую «истинная кислотность»; 3) титруемую кис­лотность; под этим часто понимают концентрацию «сво­бодной» кислоты. Однако это справедливо только для одноосновных кислот. У двуосновных кислот часть об­щей кислотности, которую можно титровать щелочью, состоит из двух фракций: недиссоциированной кислоты и одновалентных кислотных ионов.

При анализах органические кислоты можно экстра­гировать из свежих, замороженных или высушенных растительных тканей. Однако следует иметь в виду, что при высушивании в условиях повышенной температуры могут происходить изменения в содержании органиче­ских кислот (потери летучих кислот или их эфиров, взаимные превращения кислот, взаимодействие их с уг­леводами и т. д.), поэтому для определения органических кислот сушить материал лучше при комнатной темпера­туре в вакууме или применять высушивание лиофилизацией.

Для экстракции кислот можно использовать воду или органические растворители, из которых чаще всего — эфир. Однако эфир растворяет свободные кислоты, но не соли органических кислот, поэтому для экстракции со­лей экстрагируемый материал надо предварительно под­кислять минеральной кислотой.

При экстракции водой из растительного материала, кроме кислот, извлекается много сопутствующих ве­ществ— сахаров, пектиновых веществ, аминокислот, бел­ков, которые перед количественным определением необ­ходимо тщательно удалять из раствора. Удаляют эти ве­щества или экстракцией и осаждением, или при помощи катионо- и анионообменных смол. Эфир не извлекает уг­леводов, аминокислот и белков, но растворяет жиры и липоиды.

 

Цикл трикарбоновых кислот (цикл Кребса)

 

Первая реакция катализируется ферментом, цитратсинтазой, при этом ацетильная группа ацетил-КоА конденсируется с оксалатом, в результате образуется лимонная кислота:

 

 

 

Вторая реакция. Образовавшаяся лимонная кислота подвергается дегидрированию с образованием цис-аконитовой кислота, которая присоединяя молекулу воды, переходит в изолимонную кислоту (изоцитрат):

Третья реакция лимитирует скорость цикла Кребса. Изолимонная кислота дегидируется в присутствии НАД-зависимой изоцитратдегидрогеназы:

В ходе изоцитратдегидрогеназной реакции изолимонная кислота одновременно декарбоксилируется. Фермент для проявления своей активности нуждается в ионах Мg2+ или Мn2+.

Четвертая реакция. Происходит окислительное декарбоксилирование α-кетоглутаровой кислоты с образованием высокоэнергетического соединения сукцинил-КоА. Механизм этой реакции сходен с окислительного декарбоксилирования пирувата до ацетил-КоА. В реакции принимают участие 5 коферментов: ТПФ, амид липоевой кислоты, НS-КоА, ФАД и НАД+.

Пятая реакция катализируется ферментом сукцинил-КоА-синтетаза. В ходе этой реакции сукцинил-КоА при участии ГТФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ за счет высокоэргической тиоэфирной связи сукцинил-КоА:

Шестая реакция. Сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком прочно (ковалентно) связан кофермент ФАД, а сам фермент прочно связан с внутренней митохондриальной мембраной:

 

 

 

Седьмая реакция. Фумаровая кислота под действием фермента фумаратгидратазы (фумаразы) гидратируется и получается L-яблочная кислота (малат)

 

Восьмая реакция. Происходит окисление L-малата в оксалоацетат под действием митохондриальной НАД-зависимой малатдегидрогеназы:

 

 

 

Таким образом, за один оборот цикла состоящего из 8 ферментативных реакций, происходит полное окисление одной молекулы ацетил-КоА с образованием 12 молекул АТФ.

Энергетика ЦТК:

Образуется 3 НАДН2, 1 ФАДН2 и ГТФ.

Каждая молекула НАДН2 дает в системе тканевого дыхания 3 молекулы АТФ, ФАДН2 – 2 молекулы АТФ и ГТФ – 1 молекулу АТФ.

3*3АТФ + 2АТФ + 1АТФ = 12АТФ

<== предыдущая лекция | следующая лекция ==>
Обмен липидов | Тема УГЛЕВОДЫ
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 383; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.