Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Математическое развитие дошкольников средствами «веселой» математики

Читайте также:
  1. I. Математическое ожидание
  2. I. Математическое ожидание
  3. I. Экономическое развитие государства.
  4. II. Экономическое развитие СССР в 1945-1991 гг.
  5. III. Организационные изменения и организационное развитие.
  6. III. Социально-экономическое развитие России в XVII в.
  7. Агрегатные станки приобрели особое значение в связи с появлением и развитием автоматических станочных линий.
  8. Анализ обеспеченности основными средствами
  9. Анализ обеспеченности предприятия основными средствами производства.
  10. Анатомо-физиологические особенности эндокринной системы у детей. Половое развитие
  11. Аудит операций предприятия с основными средствами и нематериальными активами.
  12. Бреттон-Вудская и Кингстонская валютно-финансовые системы и их влияние на развитие мировой финансовой среды.

Взгляды педагогов 18-19 вв. на содержание и методы развития у детей математических пре6дставлений

Истоки методики развития математических представлений у детей дошкольного возраста и этапы ее становления.

Тема 1. Исследование проблем формирования математических представлений у дошкольников

Абакан

Конспект лекций

Электронный учебно-методический комплекс по дисциплине

ДПП.04 Методика математического развития, теоретические основы обучения математике

Дошкольное образование

 

 

 

(на правах рукописи)

 

 


 

1. Конспект лекций разработан в соответствии с рабочей программой дисциплины ДПП.04 Методика математического развития, теоретические основы обучения математике 050704.52 Дошкольное образование

 

2. Разработчик (и):

Паляева Нина Григорьевна, преподаватель

_____________________________________________________________________________

 

 

3. ПРИНЯТ на заседании ПЦК дошкольной педагогики, психологии и частных методик

06.09.2010г. протокол № 1

 

Зав. ПЦК дошкольной педагогики, психологии и частных методик Васильева М.И.


Раздел 1. Современные концепции математического развития детей дошкольного возраста

4. Теории и методика математического развития детей дошкольного возраста (20-50-е года ХХ века)

На длительном пути становления методики развития матема­тических представлении у детей дошкольного возраста предоснову ее как научной дисциплины составляло устное народное твор­чество: разнообразные сказки, считалки, поговорки, пословицы, загадки, шутки и т. д. В ходе их освоения дети не только овладева­ли пересчетом предметов, но и умением воспринимать и осозна­вать изменения, происходящие в окружающей их действительно­сти: природные, цветовые, пространственные и временные; коли­чественные, изменения по форме, размеру, расположению, пропорциям. Это обеспечивало естественное развитие у детей не­которых представлений, смекалки и сообразительности.

В XVIII—XIX вв. вопросы содержания и методов обучения детей дошкольного возраста арифметике и развития представле­ний о размерах, мерах измерения, времени и пространстве нашли отражение в передовых педагогических системах воспитания, раз­работанных Я. А. Коменским, И. Г. Песталоцци, К. Д. Ушинским, Л. Н. Толстым и др.

Педагоги той эпохи под влиянием требований развивающейся практики пришли к выводу о необходимости подготовки детей к усвоению математики в школе. Ими высказывались определен­ные предложения о содержании и методах обучения детей, в ос­новном в условиях семьи. Надо сказать, что специальных пособий по подготовке детей к школе они не разрабатывали, а основные свои идеи включали в книги по воспитанию и обучению.



Чешский мыслитель-гуманист и педагог Я. А. Коменский (1592—1670) в программу по воспитанию дошкольников «Мате­ринская школа» (1632) включил арифметику: усвоение счета в пределах первых двух десятков (для 4—6-летних детей), определе­ние большего и меньшего из них, сравнение предметов и геомет­рических фигур (по выбору), изучение общеупотребляемых мер (дюйм, пядь, шаг, фунт).

И. Г. Песталоцци (1746—1827), швейцарский педагог-демо­крат, указывал на недостатки существующих в то время методов обучения, в основе которых лежит зубрежка, и рекомендовал учить детей счету конкретных предметов, пониманию действий над числами, умению определять время. Предложенные им мето­ды обучения предполагали переход от простых элементов к более сложным, широкое использование наглядности, облегчающей ус­воение детьми чисел. Идеи И. Г. Песталоцци послужили в даль­нейшем (середина XIX в.) основой реформы в области обучения математике в школе.

Передовые идеи в обучении детей арифметике до школы выска­зывал русский педагог-демократ, основоположник научной педа­гогики в России К. Д. Ушинский (1824—1871). Он предлагал обу­чать детей счету отдельных предметов и групп, действиям сложения и вычитания, формировать понимание десятка как единицы счета.

Писатель и педагог Л. Н.Толстой издал в 1872 году «Азбуку», одна из частей которой называлась «Счет». Критикуя существу­ющие методы обучения, Л. Н. Толстой предлагал учить детей счету «вперед» и «назад» в пределах сотни и нумерации, основываясь при этом на детском практическом опыте, приобретенном в игре.

Методы развития у детей представлений о числе и форме нашли свое отражение и дальнейшее развитие в системах сенсор­ного воспитания немецкого педагога Ф. Фребеля (1782—1852), итальянского педагога Марии Монтессори (1870—1952) и др.

В этих классических системах сенсорного воспитания специ­ально рассматривались вопросы ознакомления детей с геометри­ческими формами и величинами; обучения счету, измерениям, составлению рядов предметов по размеру, весу и т. д. Ф. Фребель видел задачи обучения счету в усвоении детьми дошкольного воз­раста ряда чисел. Им созданы знаменитые «Дары» — специальное пособие для развития конструктивных навыков в единстве с по­знанием чисел, форм, размеров, пространственных отношений. Ф. Фребель был убежден в том, что развитие в дошкольном воз­расте «пространственного» воображения и мышления создает ус­ловия для перехода к усвоению геометрии в школе.

М. Монтессори, опираясь на идеи саморазвития и самообуче­ния, признавала необходимым создание специальной среды для освоения чисел, форм, величин, а также письменной и устной ну­мерации. Она предлагала использовать для этого специальный материал: счетные ящики, связки цветных бус, нанизанных десят­ками, счеты, монеты и многое другое.

Наиболее результативно педагогическая деятельность М. Монтессори протекала в первой половине XX в. Использова­ние в обучении и воспитании ребенка материалов по развитию у детей математических представлении строилось на определенном стиле взаимодействия взрослого с ребенком; необходимости на­блюдения за поведением детей в условии специально созданной среды; организации совместной с ребенком свободной работы и др. Система М. Монтессори предусматривает развитие у ребен­ка сенсомоторной сферы и в дальнейшем — интеллекта. Особо выделяемый по своей значимости «золотой» математический ма­териал сначала осваивается ребенком как набор бус в разной ко­личественное™, затем — в символах (цифрах), после этого — как средство освоения умений сравнивать числа. Таким образом, де­сятичная система счисления представляется ребенку зримо и ося­заемо, что ведет к успешному овладению арифметикой.

Обширно представлен в системе М. Монтессори раздел «Ло­гика и счет»: изучение фигур, размеров, способов измерения, про­екции, моделирования множеств. Наиболее интересны следу­ющие пособия: «Фигуры из гвоздиков», «Математическое солн­це», «Сложи узор», «Объедини множества».

В целом обучение математике по системе М. Монтессори на­чиналось с сенсорного впечатления, затем осуществлялся пере­ход к пониманию символа (т. е. от конкретного — к абстрактно­му), что делало математику привлекательной и доступной даже для 3—4-летних детей.

Итак, передовые педагоги прошлого, русские и зарубежные, признавали роль и необходимость первичных математических знаний в развитии и воспитании детей до школы, выделяли при этом счет в качестве средства умственного развития и настоятель­но рекомендовали обучать детей ему как можно раньше, пример­но с трех лет. Обучение понималось ими как «упражняемость» в выполнении практических, игровых действий с применением на­глядного материала, использование накопленного детьми опыта в различении чисел, времени, пространства, мер в разнообразных детских деятельностях.

Математическое развитие дошкольников средствами «веселой» занимательной математики

В конце XIX — начале XX вв. были широко распространены идеи обучения математике без принуждения и дидактичности, за­бавно, но без излишней занимательности. Математики, психологи, педагоги разрабатывали математические игры и развлечения, со­ставляли сборники задач на смекалку, преобразование фигур, ре­шение головоломок (В. А. Латышев, Н. Н. Аменицкий, И. П. Саха­ров, А. П. Доморяд, В. Арене и др.).

Авторы стремились придать четкую логику построения, не­обычность задачам-шуткам, арифметическим ребусам, задачам-головоломкам, задачам на деление целого на части и т. д. В ходе решения таких задач развиваются способность к правильному мышлению, логичность и последовательность мысли, острый ум и смекалка. Задачи на сообразительность, сметливость учат детей применять имеющиеся у них знания к различным случаям жшни, приучают к самоконтролю, а главное — способствуют выработке у детей умений самостоятельно искать путь решения.

Ряд книг был издан специально с целью развития способно­стей детей, в частности «Забавная арифметика» Н. Н. Аменицкого и И. П. Сахарова. В ней предлагалось живое и забавное решение различных практических задач и вопросов, что стимулировало проявления детской самодеятельности.

Широко применялись в обучении и развитии детей математи­ческие игры, в ходе которых был необходим подробный и четкий анализ игровых действий, возможность проявить смекалку в ходе поисков, самостоятельность. Значение математических игр рас­сматривалось авторами с позиций развития у детей интереса к изучению математики, становления умственных способностей, смекалки и сообразительности, находчивости, волевых черт ха­рактера, а также приучения детей к умственному труду.

В 20-е гг. XX в. резко расширилась сеть дошкольных учрежде­ний, была создана принципиально новая система общественного дошкольного воспитания. Обсуждались проблемы отбора содер­жания, методов развития математических представлений у детей как основа освоения математики в школе. В эти годы Е. И. Тихеевой, Л. В. Глаголевой, Ф. Н. Блехер и другими разрабатывались методические пособия, программы, игры и дидактиче­ские материалы, способствующие математическому развитию до­школьников.

Е. И. Тихеева в 20—30-е гг. XX в. четко определила свои пози­ции в области математического развития детей дошкольного воз­раста. Ею разработаны новые методы и приемы формирования основ математических представле­ний у детей; уточнено содержание обучения, созданы дидактические средства: наглядные материалы, учебные пособия, методические пособия для воспитателей.

Во взглядах Е. И. Тихеевой от­ражены общепедагогические воз­зрения того времени. Она считала центром воспитания и обучения накопление детьми восприятий, усвоение ими научных истин пу­тем самодеятельности, поощрение пытливости их ума, создание усло­вий, при которых ребенок самосто­ятельно находит то, что ему нужно, и это нужное усваивает.

При выработке собственных воззрений Е. И. Тихеевой исполь­зованы результаты работ зарубеж­ных педагогов: И. Г. Песталоцци, Ф. Фребеля, Марии Монтессори, а также практика работы воспитате­лей отечественных детских садов. Позиция Е. И. Тихеевой рас­крыта и обоснована в предложен­ном ею «естественном» пути раз­вития детей. «Естественный» путь развития понимался ею как един­ственный путь, ведущий к нор­мальному развитию числовых и в целом математических пред­ставлений у детей.

Этот путь обеспечивал развитие математических представле­ний в соответствии с возрастными и индивидуальными возмож­ностями, запросами каждого ребенка. С другой стороны, «естест­венный» путь понимался как соответствующий «данному момен­ту» развития ребенка: сложившейся ситуации и непосредственно в ней возникшему интересу к сравнению, измерению, счету, со­ставлению арифметических примеров и задач, делению предмета на доли. В целом условием развития ребенка Е. И. Тихеева счита­ла сформированность соответствующих предпосылок. Поэтому она была категорически против навязывания знаний. По ее мне­нию, педагог должен всегда задавать себе вопрос: готов ли ребенок к восприятию тех или иных знаний (например, о числе, цифрах и т. д.)? И только в случае готовности ребенка предлагать ему самостоятельно воспринимать то, до чего он дорос.

До 1939 г. в детских садах Ленинграда обучали счету по ме­тодике Л. В. Глаголевой и Ф. Н. Блехер. Л. В. Глаголева — иссле­дователь, методист, практик. В ряде ее методических пособий («Преподавание арифметики лабораторным методом» (1919), «Сравнение величин предметов в нулевых группах школ» (1930), «Математика в нулевых группах» (1930)) изложены содержание, методы и приемы развития у детей первоначальных представле­ний о числах, величинах и их измерении, делении целого на рав­ные части.

В методике обучения счету и развития числовых представле­ний Л. В. Глаголева рекомендовала опираться как на монографи­ческий, так и вычислительный методы обучения. Во всех посо­биях, разработанных ею, прослеживается мысль о необходимо­сти идти при обучении от числа к числу. Это дает возможность формировать понятие числа во всех отношениях к другим числам (монографический метод).

Л. В. Глаголева писала о том, что самое главное в методике — это подбор и правильное использование такого наглядного по­собия, при помощи которого «восприятие данного числа полу­чилось бы наиболее ярко». В приведенном ею примере точки, камешки, листики используются для иллюстрации любого числа. А такие предметы, как табуретка с четырьмя ножками, квадрат с четырьмя сторонами и четырьмя углами, кошка с четырьмя лапа­ми, помогут ребенку воспринять образ числа 4, а не какого-либо другого.

Л. В. Глаголева пропагандировала разнообразие методов обу­чения. При этом большое значение имел каждый метод: лабо­раторный (практические действия с использованием наглядного материала), исследовательский (поиск детьми ситуаций приме­нения знаний, аналогичных изучаемым), иллюстративный (за­крепление знаний, умений в продуктивной деятельности), на­глядный (демонстрация наглядных пособий). Игра рассматри­валась ею как метод обучения на занятиях. Ценность игры Л. В. Глаголева видела в развитии интересов детей, активности, находчивости и сообразительности, приучения их к наблюда­тельности на основе развития памяти, разумной критики и осо­знания своих ошибок.

Дальнейшая разработка вопросов методики развития мате­матических представлений была предпринята педагогом и ис­следователем Ф. Н. Блехер (1895—1977). Основные мысли о со­держании и методах обучения изложены ею в книге «Матема­тика в детском саду и нулевой группе» (1934), которая стала первым учебным пособием и программой для высших и средних учебных заведений по математике для советского детского сада. Ею опубликовано большое количество методических пособий, «методических писем» (1930—1940 гг.), в которых периодически предлагались уточнения к программе развития у детей матема­тических представлений, методика организации упражнений и игр, требования к индивидуальному и групповому обучению детей.

В программе обучения детей счету, разработанной Ф. Н. Бле­хер, использовались данные зарубежных психологов, собствен­ных наблюдений о времени.

Согласно содержанию обучения, разработанному Ф. Н. Бле­хер, дети осваивали пространственные и временные отношения, геометрические фигуры, пространственные направления, приемы сравнения предметов, способы оценки временной длительности.

Для реализации поставленных задач Ф. Н. Блехер рекомен­довала использовать два пути: развивать у детей количественные представления в других видах деятельности и проводить специ­альные игры и занятия. По ее мнению, дети должны активно участвовать в практических жизненных ситуациях (например, выяснять, сколько кроваток потребуется только что купленным куклам; определять самостоятельно, путем подсчета по календа­рю, количество дней до праздника); выполнять поручения взрослых, требующие освоения математических представлений; в играх, на занятиях упражняться в образовании групп предме­тов; сравнивать; отсчитывать; действуя с наглядным материа­лом, составлять числа из меньших чисел; находить цифры, по­казывающие то или иное количество и т. д.

Ф. Н. Блехер считала, что развивать у детей количественные представления следует как на основе счета, так и в процессе восприятия групп предметов. Разработанная ею методика обу­чения во многом отражала идеи монографического метода: идти в обучении от числа к числу, строить обучение на целостном восприятии групп предметов, запоминать с детьми случаи со­става чисел (в качестве подготовки к простейшим арифметиче­ским действиям), использовать числовые фигуры и т.д.

Ф. Н. Блехер разработала не только содержание обучения детей, но и методы, преимущественно игровые. Созданная ею система дидактических игр по сей день используется в дошколь­ных учреждениях с целью развития математических представле­ний и умственных способностей детей. Как считала Ф. Н. Бле­хер, дидактические игры, хотя и являются одним из важных при­емов обучения, все же не могут заменить другие его формы и методы.

На основе анализа теоретических и методических публикаций Ф. Н. Блехер можно заключить, что ею создана первая в нашей стране дидактическая система обучения математике в условиях дошкольных учреждений.

Таким образом, в 20—50-е гг. XX в. особых различий в подходах к отбору со­держания, методов обучения и развития разными педагогами не наблюдалось (Е. И. Тихеева, Л. В. Глаголева, Ф. Н. Блехер). Предлагалось развивать способность ориентироваться в про­странстве и времени, умения различать формы и величины, числа и действия над ними, представления о мерах и делении целого на части.

Вопрос о средствах и методах обучения решали, исходя из воз­можностей ребенка и гуманистических принципов организации его познавательной деятельности (Е. И. Тихеева, Ф. Н. Блехер и др.). Повседневная жизнь детей, жизненные ситуации рас­сматривались как источник и средство развития в предмет­но-игровой среде. Игры-занятия, занятия как индивидуаль­ные, так и в небольших группах — как средство умственного развития детей, овладения ими практическими действиями. '*' Логика построения занятий (уроков) с детьми, предложенная Л. В. Глаголевой, изучавшей особенности организации обу­чения в подготовительных классах, широко применялась в 50—70-е гг. и оправдывала себя в условиях организации обу­чения детей в дошкольных учреждениях по типу школьного урока. В структуре занятия четко выделялась организация вос­приятия того, что подлежит изучению, оценка, называние, перенос восприятий и освоенных действий, самостоятельное решение детьми практических задач: нарисовать, начертить, сконструировать какой-либо предмет по теме занятия. Исследование А. М. Леушиной, направленное на изучение особенностей развития представлений о множестве, числе, ве­личинах у детей 2—7 лет, активизировало направление иссле­дований в данной отрасли знаний, деятельность практических педагогов по разработке дидактического и педагогического ас­пектов: содержания, форм, методов и средств обучения.

Литература

1. Теории и технологии математического развития детей дошкольного возраста. Хрестоматия/Сост.: Михайлова 3. А., Непомнящая Р. Л., Полякова М. Н.— М.: Центр педагогического образования, 2008.

2. Щербакова Е. И. Методика обучения математике в детском саду.— М.: Академия, 2000.

Литература

1. Аменицкий Н. А., Сахаров И. П. Забавная арифметика.— М.: Наука, 1992.

2. Игры со спичками. Задачи и развлечения. / Сост.: Улицкий А. Т., Улицкий Л. А.— Минск: Вуал, 1993.

3. Литературный материал с математическим содержанием. / Сост.: Михайлова 3. А., Непомнящая Р. Л.— СПб.: ЦВПО, 2005.

4. Михайлова З.А. Игровые занимательные задачи для до­школьников.— М.: Просвещение, 1989.

5. Открываю математику. / Авт.-сост. Калинина М. И. и др.— М.: Просвещение, 2005.

6. Теории и технологии математического развития детей до­школьного возраста. Хрестоматия / Сост.: 3. А. Михайлова, Р. Л. Непомнящая, М. Н. Полякова.— М.: Центр педагогического образования, 2008.

7. Упражнение с Монтессори-материалом. Дом Марии Мон­тессори.— Рига—Москва: Педагогический центр «Эксперимент», 1998.

 

<== предыдущая лекция | следующая лекция ==>
Положения по бухгалтерскому учету на 01.01.11 | Тема 2. Современное состояние проблемы формирования у детей дошкольного возраста математических представлений и перспективы совершенствования методики

Дата добавления: 2014-01-07; Просмотров: 3568; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2019) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.006 сек.