Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интенсивность отказов

 

При рассмотрении вопросов надежности часто бывает удобно представить себе дело так, словно на элемент действует поток отказов с некоторой интенсивностью l(t); элемент отказывает в тот момент, когда происходит первое событие этого потока.

Образ "потока отказов" приобретает реальный смысл, если отказавший элемент немедленно заменя­ется новым (восстанавливается). Последовательность случайных моментов времени, в которое проис­ходят отказы (рис.3.10), представляет собой некоторый поток событий, а интервалы между событиями — независимые случайные величины, распределенные по соответствующему закону распределения.

 

 

Понятие "интенсивности отказов" может быть введено для любого закона надежности с плотностью f(t); в общем случае интенсивность отказов l будет переменной величиной.

Интенсивностью (или иначе "опасностью") отказов называется отношение плотности распределения времени безотказной работы элемента к его надежности:

. (3.7)

Поясним физический смысл этой характеристики. Пусть одновременно испытывается большое число N однородных элементов, каждый — до момента своего отказа. Обозначим n(t) — число элементов, оказавшихся исправными к моменту t, а m(t, t+Dt), как и раньше, - число элементов, отказавших на ма­лом участке времени (t, t+Dt). На единицу времени придется среднее число отказов

.

Разделим эту величину не на общее число испытываемых элементов N, а на число исправных к мо­менту t элементов n(t). Нетрудно убедиться, что при большом N отношение будет приближенно равно интенсивности отказов l (t):

. (3.8)

Действительно, при большом N n(t)»Np(t)

и .

Но согласно формуле (3.4) ,

откуда .

В работах по надежности приближенное выражение (3.8) часто рассматривают как определение ин­тенсивности отказов, т.е. её определяют как среднее число отказов в единицу времени, приходящееся на один работающий элемент.

Характеристике l(t) можно дать еще одно истолкование: это есть условная плотность вероятности отказа элемента в данный момент времени t, при условии, что до момента t он работал безотказно. Действительно, рассмотрим элемент вероятности l(t)dt — вероятность того, что за время (t, t+dt) эле­мент перейдет из состояния "работает" в состояние "не работает", при условии, что до момента t он ра­ботал. В самом деле, безусловная вероятность отказа элемента на участке (t, t+dt) равна f(t)dt. Это — вероятность совмещения двух событий:

А — элемент работал исправно до момента t;

В — элемент отказал на участке времени (t, t+dt).

По правилу умножения вероятностей: f(t)dt = P(АВ) = Р(А) Р(В/А).

Учитывая, что Р(А)=р(t), получим: ;

а величина l(t) есть не что иное, как условная плотность вероятности перехода от состояния "работает" в состояние "отказал" для момента t.

Если известна интенсивность отказов l(t), то можно выразить через нее надежность р(t). Учитывая, что f(t)=-p'(t), запишем формулу (3.7) в виде:

.

Интегрируя, получим: ,

откуда

. (3.9)

Таким образом, надежность выражается через интенсивность отказов.

В частном случае, когда l(t)=l=const, формула (3.9) дает:

p(t)=e-l t, (3.10)

т.е. так называемый экспоненциальный закон надежности.

Пользуясь образом "потока отказов", можно истолковать не только формулу (3.10), но и более об­щую формулу (3.9). Представим себе (совершенно условно!), что на элемент с произвольным законом надежности p(t) действует поток отказов с переменной интенсивностью l(t). Тогда формула (3.9) для р(t) выражает вероятность того, что на участке времени (0, t) не появиться не одного отказа.

Таким образом, как при экспоненциальном, так и при любом другом законе надежности, работу эле­мента, начиная с момента включения t=0, можно представлять себе так, что на элемент действует пуас­соновский закон отказов; для экспоненциального закона надежности этот поток будет с постоянной ин­тенсивностью l, а для неэкспоненциального — с переменной интенсивностью l(t).

Заметим, что этот образ годится только в том случае, когда отказавший элемент не заменяется но­вым. Если, как мы это делали раньше, немедленно заменять отказавший элемент новым, поток отказов уже не будет пуассоновским. Действительно, интенсивность его будет зависеть не просто от времени t, прошедшего с начала всего процесса, а и от времени t, прошедшего со случайного момента включения именно данного элемента; значит, поток событий имеет последствие и пуассоновским не является.

Если же на протяжении всего исследуемого процесса данный элемент не заменяется и может отка­зать не более одного раза, то при описании процесса, зависящего от его функционирования, можно пользоваться схемой марковского случайного процесса. но при переменной, а не при постоянной интен­сивности потока отказов.

Если неэкспоненциальный закон надежности сравнительно мало отличается от экспоненциаль­ного, то можно, в целях упрощения, приближенно заменить его экспоненциальным (рис. 3.11).

Параметр l этого закона выбирается так, чтобы сохранить неизменным математическое ожидание времени безотказной работы, равное, как мы знаем, площади, ограниченной кривой p(t) и осями коор­динат. Для этого нужно положить параметр l показательного закона равным

,

где — площадь, ограниченная кривой надежности p(t). Таким образом, если мы хотим характеризо­вать надежность элемента некоторой средней интенсивностью отказов, нужно в качестве этой интен­сивности взять величину, обратную среднему времени безотказной работы элемента.

Выше мы определили величину как площадь, ограниченную кривой р(t). Однако, если требуется знать только среднее время безотказной работы элемента, проще найти его непосредственно по стати­стическому материалу как среднее арифметическое всех наблюдённых значений случайной величины T — времени работы элемента до его отказа. Такой способ может быть применен и в случае, когда число опытов невелико и не позволяет достаточно точно построить кривую р(t).

Пример 1. Надежность элемента р(t) убывает со временем по линейному закону (рис. 3.12). Найти интенсивность отказов l(t) и среднее время безотказной работы элемента .

 

Решение. По формуле (3.7) на участке (0, to) имеем:

.

Согласно заданному закону надежности

(0<t<t0); ; .

График функции l(t) показан на рис. 3.13. При t® to, l(t)®¥. Среднее время безотказной работы равно площади, ограниченной кривой p(t) и осями координат (см. рис. 3.12): =to/2.

Пример 2. Интенсивность отказов элемента l(t) меняется по закону, представленному на рис.3.14. Найти закон надежности p(t).

Решение. На участке (0, 1) l(t)=3-2t.

По формуле (3.9) .

Вычислим р(t) на участке t>1. В общей формуле (3.9) разобьем промежуток интегрирования на два: от 0 до 1 и от 1 до t:

; р(t)=e-(1+t).

График закона надежности показан на рис. 3.15. Заштрихованная площадь изображает среднее время безотказной работы: .

 

 

 

Второй интеграл здесь равен .

Что касается первого, то он вычислен приближённо (численно): ,

откуда » 0,37+0,135=0,505.

Пример 3. Плотность распределения времени безотказной работы элемента постоянна на участке (t0, t1) и равна нулю вне этого участка (рис. 3.16). Найти интенсивность отказов l(t).

Решение. Имеем: , (to<t<t1),

где ,

откуда .

График интенсивности отказов показан на рис. 3.17; при t® t1, l(t)® ¥.

 

 

<== предыдущая лекция | следующая лекция ==>
Надёжность элемента. Плотность распределения времени безотказной работы. Среднее время безотказной работы | Критерии и количественные характеристики надёжности
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 3065; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.018 сек.