Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема прохождение непрерывной на сегменте функции через любое промежуточное значение

Пусть функция непрерывна на сегменте , причём . Тогда для любого значения , заключённого между числами и , на сегменте найдётся точка , такая что .

1. Если , то и в качестве можно взять точку или точку .

2. Если совпадает с или с , то в качестве можно взять или или соответственно.

3. . Без ограничения общности будем считать, что . Пусть - любое число, удовлетворяющее неравенству . Рассмотрим функцию . Очевидно, функция непрерывна на сегменте . Кроме этого и

. Тогда, согласно теореме 5.3 существует такая точка внутри сегмента, что , или . Теорема 5.4 доказана.

 

Первая теорема Вейерштрасса Если функция непрерывна на отрезке , то она ограничена на этом сегменте.

 

Вторая теорема Вейерштрасса. Если функция непрерывна на сегменте , то она достигает на этом сегменте своих точных граней, т.е. существуют точки , сегмента такие, что


3. Производные функции многих переменных.

Производные и дифференциалы функций

нескольких переменных.

 

Определение. Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f(x + Dx, y) – f(x, y) называется частным приращением функции по х.

 

Можно записать

.

 

 

Тогда называется частной производной функции z = f(x, y) по х.

Обозначение:

 

Аналогично определяется частная производная функции по у.

 

Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N0(x0, y0, z0) к сечению поверхности плоскостью у = у0.

 

 

Полное приращение и полный дифференциал.

Определение. Для функции f(x, y) выражение Dz = f(x + Dx, y + Dy) – f(x, y) называется полным приращением.

 

Если функция f(x, y) имеет непрерывные частные производные, то

Применим теорему Лагранжа (см. Теорема Лагранжа.) к выражениям, стоящим в квадратных скобках.

здесь

 

Тогда получаем

 

Т.к. частные производные непрерывны, то можно записать равенства:

 

Теорема Лагранжа.

Если функция f(x) непрерывна на отрезке [a, b] и дифференцируема на интервале (а, b), то на этом интервале найдется по крайней мере одна точка e

a < e < b, такая, что .

Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке.

 

Определение. Выражение называется полным приращением функции f(x, y) в некоторой точке (х, у), где a1 и a2 – бесконечно малые функции при Dх ® 0 и Dу ® 0 соответственно.

Определение: Полным дифференциалом функции z = f(x, y) называется главная линейная относительно Dх и Dу приращения функции Dz в точке (х, у).

 

Для функции произвольного числа переменных:

Геометрический смысл полного дифференциала.

Касательная плоскость и нормаль к поверхности.

 

 

нормаль

 

N

j N0

 

касательная плоскость

 

 

Пусть N и N0 – точки данной поверхности. Проведем прямую NN0. Плоскость, которая проходит через точку N0, называется касательной плоскостью к поверхности, если угол между секущей NN0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN0.

 

Определение. Нормалью к поверхности в точке N0 называется прямая, проходящая через точку N0 перпендикулярно касательной плоскости к этой поверхности.

 

В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

 

Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М00, у0), касательная плоскость в точке N0(x0,y0,(x0,y0)) существует и имеет уравнение:

.

 

Уравнение нормали к поверхности в этой точке:

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х0, у0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х0, у0) к точке (х0+Dх, у0+Dу).

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Приближенные вычисления с помощью полного дифференциала.

 

Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:

Если подставить в эту формулу выражение

то получим приближенную формулу:

Частные производные высших порядков.

 

Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части.

Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.

 

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.

 

<== предыдущая лекция | следующая лекция ==>
Теорема о прохождении через нуль непрерывной на сегменте функции | 
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 630; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.