Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Спектры поглощения рентгеновских лучей

Темы курсовых работ и рефератов

Вопросы для самопроверки

Какие структурные образования мозга контролируют состояние сознания?

Почему фокус сознания ассоциируется со "светлым пятном"?

В чем состоит содержание сознания как психофизиологического феномена?

Какие условия способствуют осознанию слабого раздражителя?

 

 

Список литературы

Дельгадо Х. Мозг и сознание. М.: Мир, 1971.

Дубровский Д.И. Информация, сознание, мозг. М.: Высшая школа, 1980.

Костандов Э.А. Функциональная асимметрия полушарий и неосознаваемое восприятие. М.: Наука, 1983.

Методологические аспекты изучения деятельности мозга. М.: Наука, 1986.

Мозг и разум. М.: Наука, 1994.

Прибрам К. Языки мозга. М.: Прогресс, 1975.

Соколов Е.Н. Нейрофизиологические механизмы сознания // Журнал высшей нервной деятельности. Т.40. Вып.6. 1990.

Свидерская Н.Е. Сознание и селекция информации // Журнал высшей нервной деятельности. Т.40. Вып.6. 1990.

 

 

Исследования содержательных и формально-динамических аспектов сознания.

Физиологические условия осознания раздражителей.

Мозговые центры и сознание.

Материалистические и идеалистические подходы к анализу проблемы соотношения мозга и сознания.

Нарушения сознания и их психофизиологические исследования.

Психофизиологические исследования измененных состояний сознания.

Эмерджентная теория сознания и ее критика.

 

Прохождение рентгеновского излучения через вещество образца сопровождается взаимодействием излучения с этим веществом. Известны три вида этого взаимодействия: (Слайд 17)

1. Рассеяние рентгеновского излучения (без изменения и с изменением длины волны);

2. Фотоэлектрический эффект;

3. Образование электрон-позитронных пар (этот эффект имеет место только при энергии квантов больше 1 Мэв).

 

Рассеяние рентгеновского излучения. Вещество, которое подвергается действию рентгеновского излучения, испускает вторичное излучение, длина волны которого либо равна длине волны падающих лучей (когерентное рассеяние), либо незначительно отличается. В первом случае, переменное электромагнитное поле, создаваемое пучком рентгеновских лучей, вызывает колебательное движение электронов облучаемого вещества, и они становятся источниками когерентного излучения. Ввиду когерентности лучи, рассеиваемые различными атомами, могут интерферировать. Расстояния же между атомными плоскостями в кристаллических веществах сравнимы с длинами волн рентгеновских лучей. Поэтому кристалл служит дифракционной решеткой для таких когерентных рентгеновских лучей.

Эффект Комптона. При комптоновском рассеянии падающий квант упруго соударяется с электронами вещества. В результате часть энергии затрачивается на увеличение кинетической энергии электрона и длина волны излучения увеличивается. Поэтому комптоновское рассеяние некогерентно, и рассеянное излучение не может интерферировать. Поэтому мы не будем на нем останавливаться, тем более, что это рассеяние незначительно для сравнительно мягкого излучения, используемого в структурном и фазовом анализе.

Фотоэффект. Этот процесс имеет место только в случае жесткого первичного излучения. В этом случае, взаимодействуя с атомами вещества, рентгеновские лучи могут выбивать электроны за пределы атома, ионизируя его. При большой кинетической энергии выбитых электронов они сами могут являться источником нехарактеристического рентгеновского излучения. То есть этот вид излучения вносит вклад только в сплошное (белое) излучение.

 

Суммарное поглощение рентгеновского излучения веществом.

 

Проходя через вещество, рентгеновские лучи вызывают ионизацию атомов, возбуждение в них флуоресцентного излучения и образование Оже-электронов. Эти процессы ответственны за поглощение рентгеновских лучей. Кроме того, интенсивность лучей, проходящих через вещество в направлении падающего пучка, уменьшается из-за рассеяния его электронами вещества по всем направлениям. Наконец, рентгеновские кванты очень большой энергии (больше 1 МэВ), пролетая около ядер, вызывают появление электронно-позитронных пар. Все это уменьшает интенсивность проходящего пучка тем больше, чем толще слой вещества.

Общий закон, количественно определяющий ослабление любых однородных лучей в поглощающем веществе можно сформулировать следующим образом:

«В равных толщинах одного и того же однородного вещества поглощаются равные доли энергии одного и того же излучения».

 

Если интенсивность лучей, падающих на вещество, обозначить через I0, а их интенсивность после прохождения через пластинку из поглощающего вещества как I, то этот закон можно выразить в следующем виде:

Возьмем тонкий однородный экран, проходя через который монохроматический пучок с сечением, равным единице, теряет энергию dI. Она пропорциональна толщине экрана dx и интенсивности пучка I0. Получим, что:

 

dI = - μ I0 dx

 

где: dx – толщина слоя вещества;

Постоянна величина μ предствляет собой натуральный логарифм числа, характеризующего уменьшение интенсивности при прохождении лучей через слой данного вещества единичной толщины:

μ = ln (I0 /I) (при dх =1).

 

Называется этот коэффициент μ –линейным коэффициентом поглощения для данного вещества, или линейным коэффициентом ослабления лучей.

 

Решая это уравнение, получим:

 

I = I0 exp (-μ x)

 

Где х – толщина слоя поглощения.

 

Коэффициент поглощения можно рассматривать как сумму коэффициентов собственного поглощения τ и коэффициента рассеяния σ.

 

μ = τ + σ

 

Удобнее пользоваться массовыми коэффициентами поглощения, т. к. коэффициенты линейного поглощения пропорциональны плотности вещества образца.

 

μ/ρ = τ/ρ + σ/ρ

 

В интересующем нас интервале длин волн массовый коэффициент рассеяния много меньше коэффициента собственного поглощения τ/ρ, поэтому приближенно принимают что:

 

μ/ρ ~ = τ/ρ

 

Если известен состав вещества образца, то можно вычислить для него μ/ρ, зная содержание компонентов в весовых (массовых) процентах.

Рассматриваемые коэффициенты поглощения зависят от порядкового номера вещества и от длины волны рентгеновского излучения. Существуют специальные таблицы. Эти данные необходимы, например, для определения глубины проникновения рентгеновского излучения в исследуемое вещество при заданной геометрии съемки рентгенограммы.

 

Теперь давайте посмотрим, зачем это нужно. На слайде 26 показан спектр поглощения рентгеновского излучения в никеле (зависимость коэффициента поглощения μ/ρ от длины волны рентгеновского излучения). Видно, что при определенных значениях длин волн происходит резкое изменение величины коэффициента поглощения.

В интервале между скачками коэффициент поглощения увеличивается с увеличением длины волны по приближенной зависимости:

 

μ = k λ3 Z3

где: k – коэффициент пропорциональности, а Z – порядковый номер элемента.

Длины волн, соответствующие скачкам коэффициента поглощения, называются краями полос поглощения. Они имеют тонкую структуру, которую мы не будем рассматривать.

Как уже указывалось, поглощение рентгеновского излучения, в основном, обусловлено выбиванием электронов с внутренних или внешних электронных оболочек атомов. Если энергия излучения больше или равна энергии, необходимой для удаления электрона с данной оболочки, то происходит поглощение, вызванное этим процессом. Если же энергия излучения меньше, то поглощение происходит только за счет более внешних оболочек. Поэтому различают K-, L-, M- и т.д. края полос поглощения.

Коэффициент k в приведенном уравнении приблизительно равен 7х10-3 для длин волн, меньших К-края полосы поглощения исследуемого вещества. В интервале между K- и L- краями полос поглощения он равен примерно 9х10-4. То есть, при переходе через К- край полосы поглощения коэффициента поглощения меняется примерно в 8 раз. Это и вызывает скачок на спектре.

Наличие этих скачков учитывается при выборе излучения для съемки рентгенограмм. Вторичное рентгеновское излучение краев полос поглощения вызывает значительное увеличение фона на рентгенограммах, и поэтому нежелательно. Поэтому для съемки выбирают излучение или с длинй волны, значительно меньшей λкрая, или большей λкрая. (слайд 28 а и б).

Наличие краев полос поглощения используется и для ослабления β – излучения. Для этого на пути пучка излучения К – серии ставится тонкая пластинка из материала с краем полосы поглощения, лежащим между α и β -линиями используемого излучения. (Слайд 28 г).

Обычно в качестве фильтра может быть использована фольга элемента с порядковым номером на единицу меньше порядкового номера анода.

Но в реальности не все так просто. Например, для съемки рентгенограммы двуокиси титана TiO2 можно использовать излучение от молибденовой трубки, так как длина волны рентгеновского излучения в этом случае равна 0,709 А, то есть много меньше края полосы поглощения титана (2,50 А). То есть, мы реализуем ситуацию положения (а) на слайде. Однако использование для фазового анализа излучения этой трубки нежелательно. Из-за малой длины волны разрешающая способность и точность определения межплоскостных расстояний будет невысокой. Предпочтение следует отдать излучению с большей длиной волны. Например, - от медной трубки. Длина волны CuKα равна 1,54А, также меньше края полосы поглощения титана. В качестве фильтра ставят никелевую фольгу. Порядковый номер меди 29, а у никеля 28. Для ослабления вторичного титанового излучения поверх никеля помещают еще алюминиевую фольгу. Более мягкое титановое излучение будет поглощаться значительно сильнее, чем более жесткое медное. То есть, процесс выбора длины волны и материала фильтра не очень прост.

 

2. ИСТОЧНИКИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Основные способы получения рентгеновских лучей для структурных исследований связаны с использованием потока быстро летящих электронов. Ускорители электронов – бетатроны и линейные – используются для получения мощного коротковолнового рентгеновского излучения, применяемого, главным образом, в дефектоскопии.

Но ускорители электронов громоздки, сложны в настройке и используются преимущественно в стационарных установках. Наиболее распространенным источником рентгеновских лучей является рентгеновская трубка.

По принципу получения электронных пучков рентгеновские трубки делятся на трубки с горячим катодом, (свободные электроны возникают в результате термоэлектронной эмиссии (рис. 3)) и трубки с холодным катодом (свободные электроны возникают в результате автоэлектронной эмиссии). Рентгеновские трубки обоих типов могут быть запаянными с постоянным вакуумом и разборными, откачиваемыми вакуумными насосами.

Наиболее распространены запаянные рентгеновские трубки с горячим катодом. Они состоят из стеклянной колбы и двух электродов – катода и анода (рис. 5). В колбе создается высокий вакуум (10-7 – 10-8 мм рт. ст.), обеспечивающий свободное движение электронов от катода к аноду, тепловую, химическую и электрическую изоляцию раскаленного катода.

Катод рентгеновской трубки состоит из нити накала и фокусирующего колпачка. Форма нити и колпачка определяется заданной формой фокусного пятна на аноде трубки – круглой или линейчатой. Нить из вольфрамовой спирали разогревается электрическим током до 2000 – 2200 С; для повышения эмиссионных характеристик нить часто покрывают соединениями тория.

Размеры фокусного пятна определяют оптические свойства рентгеновской трубки. Резкость изображения при просвечивании, а также точность рентгеноструктурного анализа тем выше, чем меньше размеры фокуса. Рентгеновские трубки с малым размером фокуса называются острофокусными.

Анод рентгеновской трубки представляет собой медный цилиндр, в торец которого впрессовано зеркало анода – пластинка из материала, в котором происходит торможение электронов. В рентгеновских трубках для просвечивания зеркало изготовлено из вольфрама, для рентгеноструктурного анализа – из того металла, характеристическое излучение которого будет использовано. Торец анода в рентгеновских трубках для структурного анализа срезан под определенным углом к оси анода (пучку электронов). Это делается с целью получить выходящий из трубки пучок с максимальной интенсивностью.

При ударе электронов о зеркало анода приблизительно 96% их энергии превращается в тепло, поэтому анодный цилиндр охлаждается протекающими водой или маслом.

Анод защищен специальным медным чехлом для задержания отраженных от анода электронов и защиты от неиспользуемых рентгеновских лучей. В этом чехле есть одно или несколько окошек для выхода рентгеновских лучей, в которые вставляются тонкие пластинки из бериллия, который практически не поглощает рентгеновское излучение, генерируемое в трубке.

Предельная мощность рентгеновской трубки P определяется мощностью проходящего через нее электрического тока:

P = UI

где U – максимальное напряжение, прилагаемое к рентгеновской трубке; I – максимальный ток, идущий через рентгеновскую трубку.

Реальная предельная мощность зависит от площади фокусного пятна (т. е. удельной мощности), материала анода и продолжительности работы трубки. Кратковременные нагрузки могут быть в десятки раз выше длительных нагрузок.

Практически измеряемый ток через рентгеновскую трубку появляется лишь при достижении током накала определенной величины, соответствующей температуре нагрева нити 2000–2100 С (рис. 6 а); повышение тока накала резко увеличивает температуру и количество испускаемых нитью электронов (эмиссионный ток). При постоянном токе накала и при низких напряжениях на анод попадают не все электроны эмиссии, а лишь их часть, тем большая, чем больше анодное напряжение. При определенном напряжении, зависящем от тока накала, все электроны эмиссии попадают на анод (режим насыщения), поэтому дальнейшее увеличение анодного напряжения не увеличивает анодный ток (он равен эмиссионному). Это предельное значение анодного тока называют током насыщения, и он тем выше, чем больше ток накала (рис. 6 б). Рентгеновские трубки работают в режиме насыщения при напряжениях в 3–4 раза выше номинального, т. е. необходимого для установления тока насыщения. Поэтому анодный ток регулируют в широких пределах, незначительно изменяя ток накала.

В обозначениях рентгеновских трубок для структурного анализа вместо анодного напряжения указывается материал зеркала анода, в качестве которого используются Cr, Fe, Co, Ni, Cu, Mo, Ag, W и некоторые другие чистые металлы. (Каждая, естественно, имеет свою длину волны характеристического излучения). Например, трубка 0,7БСВ-2-Со имеет длительную мощность 0,7 кВт, безопасна, предназначена для структурного анализа, водяное охлаждение, тип 2, кобальтовый анод.

 

РЕГИСТРАЦИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ.

 

Для регистрации рентгеновских лучей применяются фотографический, люминесцентный, сцинтилляционный, электрофотографический и ионизационный методы.

Исторически первым, и до недавнего времени наиболее используемым был фотографический метод.

Фотографический метод регистрации рентгеновских лучей широко распространен и в настоящее время. Он обладает высокой чувствительностью и документальностью, но требует использования специальных фотоматериалов и их трудоемкой обработки. Рентгеновские пленки имеют двухсторонний слой эмульсии, содержащий значительно больше бромистого серебра, чем обычные фотоматериалы. Фотоэмульсия состоит из мельчайших (~ 1 мкм) кристалликов AgBr с присадками небольших количеств серы, что создает структурные дефекты. Поэтому возникают центры возбуждения скрытого изображения. При поглощении квантов рентгеновских лучей с энергией ν = ε h в эмульсии, как и при действии видимого света, идут процессы по схеме:

AgBr + h ν → Ag + Br.

 

Скопление 20-100 атомов Ag образует устойчивый центр скрытого изображения, который способен проявляться под действием фотореагента – проявителя. Кристаллики, содержащие центры скрытого изображения, восстанавливаются до металлического серебра. Кристаллики AgBr, не содержащие таких центров и не восстановленные проявителем, вымываются из эмульсии закрепляющим раствором. В результате на фотопленке остаются только зерна металлического серебра. Число таких зерен и определяет плотность почернения фотоэмульсии, которое пропорционально экспозиции – произведению интенсивности излучения на время облучения.

Оценку плотности почернения на рентгенограммах производят визуально или более точно с помощью микрофотометров, которые позволяют записать и рассчитать кривую распределения плотности почернения.

 

Люминесцентный метод наблюдения изображения на светящемся экране (рентгеноскопия) обладает очень большой производительностью, не требует затрат на фотоматериалы. Этот метод основан на свечении под действием рентгеновских лучей некоторых веществ и особенно люминофоров – веществ, дающих большой выход видимого излучения (флуоресценцию).

Наилучшим люминофором с желто-зеленым свечением является смесь 50% ZnS+50% CdS. Подобные люминофоры используют для изготовления экранов визуального наблюдения изображений в рентгеновских лучах (экраны для просвечивания в дефектоскопии и медицинской диагностике). Небольшие экраны применяют для настройки рентгеновских камер и юстировки гониометров рентгеновских дифрактометров. Люминофор CaWO4 (с сине-фиолетовым свечением) применяют для усиления фотографического действия рентгеновских лучей. Для этого экран плотно прижимают к эмульсии фотографической пленки, что позволяет резко уменьшить экспозицию при просвечивании (флюорография).

Сцинтилляционный счетчик представляет собой сочетание люминесцентного кристалла (NaI с примесью активатора из талия Tl) и фотоэлектронного умножителя (ФЭУ).

Проникая в сцинтиллятор, квант рентгеновского излучения поглощается люминофором, в результате чего образуется фотоэлектрон. Проходя через вещество кристалла этот электрон ионизирует большое количество атомов. Ионизированные атомы, возвращаясь в стабильное состояние, испускают фотоны ультрафиолетового света. Эти фотоны, попадая на фотокатод ФЭУ, выбивают из него электроны, котрые, ускоряясь в электрическом поле фотоумножителя, попадают на первый эмиттер. Каждый электрон выбивает из материала покрытия эмиттера несколько электронов, и весь процесс повторяется на следующем эмиттере и так далее. Современные ФЭУ состоят из 8 – 15 каскадов, их полное усиление доходит до 107 – 108.

На каждый каскад подается напряжение 150-200 вольт. Общее напряжение на ФЭУ 600 – 2000В. На выходе ФЭУ возникает импульс напряжения, пропорциональный энергии регистрируемого кванта. Например, для Кα меди амплитуда этого импульса равна 0,01 В. Поэтому для регистрации таких импульсов используются усилители с усилением порядка тысячи.

 

Электрофотографический метод (ксерография) сохраняет многие преимущества фотометода, но более экономичен. Принцип его такой же, как у множительных аппаратов. Этот метод пока не нашел широкого применения в практике структурных исследований, но для решения задач дефектоскопии, особенно при микродефектоскопии на основе так называемых рентгеновских микроскопов, он начинает использоваться.

 

Ионизационный метод позволяет точно измерять интенсивность рентгеновских лучей, но измерение проводится на небольшой площади, определяемой размерами входного окна счетчика и измерительных щелей. Поэтому для измерения пространственного распределения интенсивности рентгеновских лучей необходимо сканирование – перемещение счетчика по всей области углов рассеяния.

Это ограничивает применение метода в дефектоскопии, где он широко используется только для измерения толщины, однако в рентгеноструктурном анализе этот метод практически вытесняет все остальные, несмотря на необходимость использования дорогостоящей электронной аппаратуры.

Ионизационный метод основан на ионизации атомов вещества при взаимодействии с квантами рентгеновских лучей. Если ионизация газа происходит в поле плоского конденсатора, то образовавшиеся ионы движутся к соответствующим электродам, и возникает ионизационный ток. При увеличении напряженности электрического поля на обкладках конденсатора скорость ионов увеличивается, поэтому уменьшается вероятность их нейтрализации при столкновении противоположных ионов, следовательно, возрастает ионизационный ток (рис. 7). При напряжении U > U1 нейтрализация становится ничтожной, и ионизационный ток достигает насыщения.

При дальнейшем увеличении напряжения до U = U2 ионизационный ток не увеличивается, возрастает лишь скорость ионов. При U > U2 скорость ионов становится настолько большой, что происходит ударная ионизация молекул газа. Фотоэлектроны, образовавшиеся при взаимодействии излучения с атомами газа и потерявшие скорость при соударениях, не рекомбинируют, а вновь ускоряются, получая кинетическую энергию, достаточную для ионизации газа и создания новых пар ион – электрон. В результате этих процессов ударная ионизация происходит снова и снова и количество электронов лавинообразно растет. Ток начинает линейно возрастать с увеличением напряжения за счет так называемого газового усиления. Коэффициент усиления при напряжениях до U ≤ U3 может достигать 102 -104 (область полной пропорциональности).

В этой области существуют два вида разрядов: несамостоятельный и самостоятельный. В области U2 - U3 лавины электронов быстро затухают и разряд прекращается, как только все ионы и электроны достигают катода и анода. Разряд существует только до тех пор, пока в счетчик попадает излучение. Это несамостоятельный разряд.

Дальнейшее повышение напряжения вызывает самостоятельный разряд.

При U > U3 нарушается линейность газового усиления (область неполной пропорциональности). При U > U4 возникает лавинный разряд. Лавинообразование идет также под действием фотоэлектронов, образующихся за счет фотоэффекта на катоде. Катод облучается ультрафиолетовым излучением, образующимся при рекомбинации ионов. Разряд мгновенно распространяется по всему объему газа и для его поддержания не требуется новых квантов излучения.

<== предыдущая лекция | следующая лекция ==>
 | Лекция пятая. Введение в нравственное богословие
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1269; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.062 сек.