Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Интервальная оценка математического ожидания случайной величины




Обычно среднее значение случайной величины находят по выборке из генеральной совокупности. Математическое ожидание случайной величины в генеральной совокупности М (х) обычно неизвестно. Его можно приближенно оценить с помощью выборочного среднего значения которое является случайной величиной и имеет дисперсию d2. Чаще всего с достаточным основанием предполагается, что случайная величина как представляющая собою сумму многих случайных величин, имеет распределение, близкое к нормальному.

Размах значений нормально распределенной величины составляет приближенно ±3d (ширина кривой нормального распределения). Где-то в этом интервале и заключено математическое ожидание М (х). Наиболее вероятно, что оно совпадает со средним значением которое является точечной оценкой математического ожидания.

Менее вероятно, что математическое ожидание смещено в ту или иную сторону от среднего значения. Интервал возможных значений математического ожидания зависит от вероятности q = Ф(t) и выражается через коэффициент вероятности t соотношением

t d < М (х) < + t d. (2.22)

Данный интервал называется доверительным интервалом или интервальной оценкой математического ожидания. Каждому значению вероятности q соответствует определенный коэффициент вероятности t и размер доверительного интервала (на основании данных примера 2):

 

Вероятность q = Ф(t) Коэффициент вероятности t Доверительный интервал
0,683   – d < М (х) < + d
0,954   – 2d < М (х) < + 2d
0,997   – 3d < М (х) < + 3d

 

Используя данные примера 2, в котором известно среднее содержание кремнезема в граните = 70,35 %, и d = 0,80 %, получаем доверительные интервалы:

 

Вероятность q Доверительный интервал
0,683 69,65 < М (х) < 71,15
0,954 68,75 < М (х) < 71,95
0,997 67,95 < М (х) < 72,75

 

Какую из вероятностей q принять за основу, нельзя решить математическим путем, так как ответ лежит в области принятия решений и должен опираться на какое-то логическое или экономическое обоснование. Практически в менее ответственных случаях принимают t = 2 и q = 0,954, в более ответственных случаях t = 3 и q = 0,997.

При наличии достаточного обоснования могут приниматься и дробные значения t.

Если среднее значение или другая оцениваемая величина подчиняются не нормальному, а другому закону распределения, то, естественно, вероятность q будет иная.

 

3) Выделение аномальных значений

Статистические характеристики и получаемые на их основе выводы имеют смысл лишь для однородных совокупностей. При объединении двух и более однородных совокупностей с различными статистическими характеристиками расчеты по объединенной совокупности обычно не имеют смысла.

Искажение статистических характеристик происходит и в том случае, когда в однородную совокупность попадают единичные значения, значительно отличающиеся от среднего, называемые аномальными или ураганными. Поэтому актуальной является задача о разделении неоднородной совокупности на однородные, о выделении из неоднородных совокупностей аномальных значений. Данная задача имеет несколько способов решения при условии, что известен или задан закон распределения случайной величины.

Распространенный способ выделения аномальных значений называется правилом «трех сигм» и основан на том, что случайная величина при нормальном законе распределения практически полностью (на 99,7 %) заключена в пределах от – 3s до + 3s (см. рис.2.7).

Если значение случайной величины отличается от среднего значения больше чем на 3s, то оно является аномальным. Естественно, что испытуемое значение не должно участвовать в расчете среднего значения и среднеквадратичного отклонения при нормировании случайной величины.

Тогда правило «трех сигм» преобразуется: если нормированное значение | t | > 3, то оно является аномальным.

Пример 3. Средняя зольность угля = 6,5 %, среднеквадратичное отклонение s = 2,1 %. Определить, не является ли аномальной проба угля с зольностью 15 %.

Решение: Найдем нормированное значение t = (15 – 6,5)/2,1 = 4,05. Поскольку t > 3, проба является аномальной и относится к другой совокупности.

На основе приведенных данных можно определить, какие вообще значения зольности являются аномальными. Так как – 3s = 6,5 – 3×2,1 = 0,2 %;

+ 3s = 6,5 + 3×2,1 = 12,8 %, то аномальными являются значения зольности менее 0,2 и более 12,8 %.

Если распределение случайной величины логнормальное, то правило «трех сигм» применяется к логарифмам значений, что используется при геохимическом методе поисков месторождений для выделения геохимических аномалий.

Пример 4. Среднее (фоновое) содержание меди = 0,018, дисперсия натуральных логарифмов = 0,22. Определить, какие содержания меди надо считать аномальными.

Решение: Найдем σ z == 0,47; = ln/2 = ln0,018 – 0,22/2 = –4,13. Нижний предел логарифмов z 1 =– 3s z = –4,13 – 3×0,47 = –5,54. Верхний предел логарифмов z 2 = ln+/2 = –4,13 + 3×0,47 = –2,72.

Так как z = ln х, то х = e z и получаем нижний предел содержаний

х 1 = е–5,54 = 0,004 %, верхний предел х 2 = е–2,72 = 0,066 %.

Следовательно, аномальными являются содержания меди менее 0,004 и более 0,066 %. На практике нижним пределом обычно пренебрегают, полагая его равным нулю.

Наряду с правилом «трех сигм» существуют и другие правила выявления аномальных значений. Более общее правило состоит в том, что задается либо вероятность q, либо соответствующая ей предельная величина критерия t. Если нормированное значение превышает предельное значение t, то значение случайной величины является аномальным.

Следует учесть, что при исключении аномальных значений происходит искажение (смещение) статистических характеристик оставшейся совокупности. Так, если из нормально распределенной совокупности исключить одно или несколько максимальных значений, то уменьшатся среднее значение и дисперсия – возникает усеченное нормальной распределение. Это обстоятельство рекомендуется учитывать при выделении аномальных значений.

Обозначим смещенные характеристики усеченного распределения: среднее значение и дисперсия , тогда их связь с несмещенными характеристиками выражается формулами

(2.23)

= (1 – ty – y 2); (2.24)

, (2.25)

где у – нормированное смещение среднего; n – число исключенных значений; N – общее число значений случайной величины; f (t) – функция плотности вероятности; t – квантиль нормального распределения, соответствующая вероятности p = 1 – n / N,

т.е. t = F –1(1 – n / N).

Поскольку статистические характеристики изменяются, происходит и смещение критерия t:

(2.26)

Из приведенных формул следует, что величины t, f (t), y, t смещ зависят только от отношения n / N.

Пример 5. Необходимо проверить аномальность максимальных значений табл.2.6.

Решение:

Таблица 2.6




Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 2171; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.066 сек.