Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Опознавательные призна­ки и признаки деятельности объектов

Видовые демаскирующие признаки описывают внешний вид объекта. Они объективно ему присущи, но выявляются в результате анализа внешнего вида модели (изображения) объекта на экране оптического приемника (сетчатки глаза человека, фотоснимке, экрана телевизионного приемника, прибора ночного видения и т. д.). Так как модель в общем случае отличается от оригинала, то состав и значения видовых демаскирующих признаков зависят не только от объекта, но и от условий наблюдения и характеристик оптического приемника. Наибольшее количество информативных видовых демаскирующих признаков добывается при визуально-оптическом наблюдении объектов в видимом диапазоне.

Основными видовыми демаскирующими признаками объектов в видимом свете являются:

- фотометрические и геометрические характеристики объектов (форма, размеры объекта, цвет, структура, рисунок и детали его поверхности);

- тени, дым, пыль, следы на грунте, снеге, воде;

- взаимное расположение элементов группового (сложного) объекта;

- расположение защищаемого объекта относительно других известных объектов.

Геометрические и фотометрические характеристики объектов образуют наиболее устойчивую и информативную информационную структуру, так как они присущи объекту и относятся к прямым признакам. Размеры объекта наблюдения определяются по максимальному и минимальному линейным размерам, площади и периметра проекции объекта и его тени на плоскость, перпендикулярную к линии визирования (наблюдения), высоте объекта и др.

Форма - один из основных демаскирующих признаков, прежде всего, искусственных объектов, поскольку для них, как правило, характерны геометрические правильные формы.

Размеры приобретают значение основного демаскирующего признака для объектов примерно одинаковой формы.

Детали объектов, их количество, характер расположения дают представление о сложном объекте и позволяют отличить его от подобных по форме.

Тени объектов возникают в условиях прямого солнечного освещения и являются важными демаскирующими признаками. По тени легче судить о форме и высоте объекта. Некоторые объекты (например, линии электропередач, антенные мачты, ограждения и т. д.) часто распознают только по тени. Различают два вида тени: собственную, которая ложится на поверхность самого объекта в зависимости от его формы, и падающую, отбрасываемую объектов на фон или поверхность других объектов. По падающей тени можно обнаружить объект, определить его боковые размеры, высоту, а также в ряде случаев и форму.

Важнейшим свойством поверхности объекта, определяющий его цвет и яркость, является коэффициент отражения поверхности на различных частотах: в видимом, инфракрасном и радиодиапазоне.

Объекты по-разному отражают падающие на них лучи света. Отражательные свойства объектов описываются коэффициентами (спектральным и интегральным) и индикатрисой отражения (рассеяния).

Графическое представление зависимости значений спектральных коэффициентов отражения от длины волны для различных объектов отличаются конфигурацией и положением максимума, что используется для различения объектов. Например, коэффициенты отражения растительности в инфракрасном диапазоне в несколько раз выше, чем в видимом, а коэффициенты отражения искусственных покрытий заметно не отличаются. Например, коэффициент отражения от листвы летом в ближнем инфракрасном в 3-5 выше, чем в видимом, а от бетонных и асфальтовых покрытий изменяется незначительно. Индикатриса отражения характеризует распределение отраженного излучения в пространстве. Интегральный коэффициент отражения определяется в результате усреднения коэффициентов отражения для сравнительно широкого интервала длин волн.

В зависимости от фактуры поверхности различают направленное (зеркальное), рассеянное (диффузное) и смешанное отражение. Граница между ними условная и определяется соотношением величин неровностей поверхности и длины падающей волны. Поверхность считается зеркальной, если отношение среднеквадратичное значение высоты неровностей h к длине волны l менее единицы, шероховатой, если более двух. Следовательно, шероховатая поверхность в видимом свете может в ИК-диапазоне выглядеть как зеркальная. Диффузное отражение присуще мелкоструктурным элементам, таким, как песок, свежевыпавший снег. Большинство объектов земной поверхности имеют смешанную индикатрису отражения, которая мало отличается от диффузной.

Яркость объекта, определяемая не только коэффициентами отражения объекта, но и яркостью внешнего источника освещения, относится к косвенным признакам, таким как дым, пыль, его следы на различных поверхностях.

Любые тела излучают электромагнитные волны в широком диапазоне частот. В ближней (0.75 -1.3 мкм) и средней (1.2 -3.0 мкм) зонах ИК-излучения мощность теплового (собственного) излучения объектов значительно меньше мощности отраженного от объекта потока солнечной энергии. С переходом в длинноволновую область ИК-диапазона мощность собственного излучения объектов становится соизмеримой с мощностью отраженной солнечной энергии. Величина энергии, излучаемая любым телом с температурой Т пропорциональна в соответствии с формулой Стефана-Больцмана величине T4. Максимум энергии излучения тел при температуре воздуха летом находится в диапазоне 3-5 и 8-14 мкм. Чем выше температура тела, тем больше излучаемая энергия, а ее максимум смещается в сторону более коротких волн. Поэтому нагретые тела с помощью соответствующих приборов могут наблюдаться в полной, с точки зрения человека-наблюдателя, темноте как в инфракрасном, так и радиодиапазонах.

При оценке излучений в инфракрасном диапазоне необходимо учитывать теплопроводность материалов объектов наблюдения. Нагреваясь от солнечных лучей, они к отраженному свету добавляют повышающуюся с ростом температуры долю собственных излучений. В диапазоне выше трех мкм мощность собственного теплового излучения объекта может превышать мощность отраженного им света.

В связи с этими свойствами в инфракрасном диапазоне появляется дополнительный признак - температура различных участков поверхности объекта по отношению к температуре фона.

Зрительный анализатор человека не воспринимает лучи в инфракрасном диапазоне. Поэтому видовые демаскирующие признаки в этом диапазоне добываются с помощью специальных приборов (ночного видения, тепловизоров), имеющих худшее разрешение, чем глаз человека. Кроме того, видимое изображение на экранах этих приборов одноцветное. Но изображение в инфракрасном диапазоне может быть получено при малой освещенности объекта или даже в полной темноте. В этом случае к демаскирующим признакам добавляются признаки, характеризующие температуру поверхности объекта.

В общем случае к демаскирующим признакам объекта в ИК-диапазоне относятся следующие:

- геометрические характеристики внешнего вида объекта (форма, размеры, детали поверхности);

- температура поверхности.

В радиодиапазоне наблюдается более сложная картина, чем при отражении света. Отражательные возможности поверхности в этом диапазоне определяются, кроме указанных для света, ее электропроводностью и конфигурацией относительно направления падающей волны. Большая часть суши отражает электромагнитную волну в радиодиапазоне диффузно, спокойная водная поверхность - зеркально.

Радиолокационное изображение объектов сложной формы (автомобиль, самолет и др.) формируется совокупностью отдельных пятен различной яркости, соответствующих так называемым “блестящим точкам” объектов, отражающих сигнал в направлении радиолокационной станции (РЛС). “Блестящие точки” на экране локатора создают поверхности объектов, расположенных перпендикулярно направлению облучения, а также элементы конструкции, которые после переотражений внутри конструкции радиоволны к приемнику радиолокатора. Наибольшей отражающей способностью в направлении антенны радиолокационной станции обладают конструкции в виде 2-4‑х жестко связанных между собой взаимно перпендикулярных металлических или металлизированных плоскостей. Такие конструкции называются уголковыми радиоотражателями, широко применяемыми для имитации ложных объектов.

Конкретный вид радиолокационного изображения зависит от положения объекта относительно направления облучения, так как при изменении ориентации меняется количество и взаимное положение “блестящих точек”.

Следовательно, размеры и форма радиолокационного изображения могут существенно меняться в зависимости от величины индикатрисы отражения и отличаться от подобных признаков, наблюдаемых в видимом свете. Отражательная способность объекта характеризуется эффективной площадью рассеяния.

Эффективная площадь рассеяния (отражения) соответствует площади плоской хорошо проводящей (металлической) поверхности, перпендикулярной к направлению облучения и помещенной в точке нахождения объекта и которая создает у приемной антенны радиолокационной станции такую же плотность потока мощности, как и реальный объект.

Эффективная площадь рассеяния человека составляет около 0.1-1 м2, легкового автомобиля - около 3-5 м2 , грузового автомобиля 7-10 м2. В связи с сильной зависимостью значений эффективной площади рассеяния от пространственного положения объекта относительно направления на радиолокационную станцию имеет место большой разброс данных для одних и тех же объектов.

Кроме того, в зависимости от длины облучающая электромагнитная волна отражается не только от поверхности объекта, но и от более глубинных ее слоев. Проникающая способность в дециметровом диапазоне для сухой почвы, например, может составлять 1-2 м.

К основным видовым демаскирующим признакам объектов радиолокационного наблюдения относятся:

- геометрические и яркостные характеристики (форма, размеры, яркость, детали);

- эффективная площадь рассеяния;

- электропроводность поверхности;

Видовые демаскирующие признаки в радиодиапазоне добываются также с помощью тепловой радиолокации, приемники которой способны принимать сигналы собственных электромагнитных излучений и формировать на их основе изображения объектов. Так как возможности тепловых радиолокаторов весьма ограничены по разрешению и чувствительности, то демаскирующие признаки в радиодиапазоне позволяют выявлять меньший чем в видимом диапазоне набор признаков.

Таким образом, максимальное количество признаков внешнего вида объекта обеспечивают в видимом оптическом диапазоне фотоприемники с высоким разрешением, к которым в первую очередь относится глаз человека.

В инфракрасном диапазоне и в особенности в радиодиапазоне количество и качество признаков уменьшается. Отсутствует такой информативный признак как цвет. С увеличением длины волны ухудшается разрешение характеристик признака, например, точность оценки размеров объекта и его деталей. Если в инфракрасном диапазоне по изображению можно измерять объекты на местности с точностью до долей мм, то максимальное разрешение радиолокационных станций составляет единицы метров. Поэтому на радиолокационном изображении будут отсутствовать многие детали объекта, наблюдаемые на его изображении в оптическом диапазоне. Однако в инфракрасном и радиодиапазонах проявляются дополнительные признаки, которые в видимом диапазоне отсутствуют.

В радиодиапазоне яркость точки радиолокационного изображения зависит от электропроводности материала поверхности и эффективной площади рассеяния. Чем выше электропроводность поверхности объекта и больше площадь рассеяния, тем большая часть энергии отражается в направлении приемо-передающей антенны радиолокатора.

Следовательно, видовые демаскирующие признаки объектов и окружающей среды (фона) образуют признаковые структуры, отличающиеся в различных диапазонах длин электромагнитной волны. Эти свойства видовых демаскирующих признаков используются при комплексном добывании информации и их необходимо учитывать при организации защиты.

 

Сигнальные демаскирующие признаки

Понятие «сигнал» достаточно емкое и в общем случае обозначает условный знак для передачи на расстояние каких-нибудь сведений. В данных материалах под сигналом понимается носитель информации в виде поля или потока микрочастиц (электронов, ядер гелия).

Состав естественных и искусственных сигналов многообразен. К ним относятся собственные (обусловленные тепловым движением электронов, световые, радиоактивные) излучения объектов, отраженные от объектов поля и излучения, а также разнообразные созданные человеком источники электромагнитных излучений (радио и электрические устройства, приборы, средства). Последние могут рассматриваться как самостоятельные объекты защиты, например, радиостанции, так и входить в состав других объектов.

Классификация сигналов представлена на рис. 1.4.

Рис. 1.4. Классификация сигналов.

К аналоговым сигналам относятся сигналы, уровень (амплитуда) которых может принимать произвольные значения в определенном для сигнала интервале.

Амплитуда простого и достаточно распространенного в природе аналогового гармонического сигнала изменяется по синусоидальному закону:

s(t)=Asin(wt+j), где А‑амплитуда, w=2pf-круговая частота колебания, j ‑ фаза колебания.

Частота f=w/2p измеряется в Гц и называется линейной.

Большинство аналоговых сигналов имеют более сложную форму. Периодические (повторяющиеся через время Тn- период) сигналы произвольной формы могут быть представлены в соответствии с формулой Фурье в виде суммы гармонических колебаний:

s(t)=Cо+ kcos(kwt - jк),

где Cо - постоянная составляющая сигнала;

Ск - амплитуда к-ой гармоники сигнала (к=1,2,.....,n);

кw и jк - частота и фаза к-ой гармоники сигнала.

Параметры ряда Фурье вычисляются по соответствующим формулам [67]. Ряд Фурье представляет собой математическую модель периодического сигнала, также как любой цвет может быть разложен на составляющие красного, зеленого и синего цветов.

Совокупность гармонических составляющих сигнала образуют его спектр.

Амплитуда каждой спектральной составляющей характеризует энергию сигнала на соответствующей гармонике основной частоты. Чем выше скорость изменения амплитуды сигнала, тем больше доля в его спектре высокочастотных гармоник. Разность между максимальной и минимальной частотами спектра сигнала, между которыми сосредоточено основная часть, например, 95%, называется шириной спектра. Графическое изображение спектра периодического сигнала представлено на рис. 1.5.

Рис. 1.5. Спектр периодического аналового сигнала.

Частоты составляющих спектра непериодического аналогового сигнала непрырывно меняются. При наблюдении спектра такого сигнала на экране спектроанализатора положение и уровень различных спектральных составляющих непрырывно меняются и спектр выглядит как сплошной. В соответствии с изменением амплитуды аналогового сигнала меняется его энергия или мощность (так как мощность пропорциональна квадрату амплитуды). В зависимости от времени измерения энергии сигнала различают среднюю и мгновенную мощность. Десятичный логарифм отношения максимальной мощности сигнала к минимальной называется динамическим диапазоном сигнала.

Таким образом, аналоговый сигнал описывается набором параметров, являющихся его признаками. К ним относятся:

- частота гармонического или диапазон частот для нерегулярного сигнала;

- фаза сигнала;

- длительность сигнала;

- амплитуда или мощность сигнала;

- ширина спектра сигнала;

- динамический диапазон сигнала.

У дискретных сигналов амплитуда имеет конечный, заранее определенный набор значений. Наиболее широко применяется двоичный (бинарный) дискретный сигнал: в ЭВМ, в телеграфии, при передаче данных. Информационные сигналы, циркулирующие в ЭВМ IBM PC, имеют значения амплитуды: 0 и 5 В. Осциллограмма бинарного сигнала показана на рис. 1.6.

Рис. 1. 6. Осциллограмма бинарного сигнала.

Дискретный сигнал характеризуется следующими параметрами: амплитудой А и мощностью P, длительностью импульса tи периодом Тп или частотой Fп =1/Tп повторения импульсов (для периодических дискретных сигналов), шириной спектра сигнала DFс, скважностью импульсов a=Тп/tи. Спектр дискретного периодического сигнала содержит бесконечное количество убывающих по амплитуде гармоник. Для бинарного периодического сигнала фрагмент спектра показан на рис. 1.7.

Рис. 1.7. Спектр бинарного сигнала.

Он характеризуется следующими свойствами:

- амплитуда гармонической составляющей Ск уменьшается по закону ½sinx/x½;

- амплитуда гармоники Ск обращается в ноль в точках к/tи, к=1,2,...;

- в области частот спектра (0 - 1/tи) располагаются a -1 гармоник;

- постоянная составляющая сигнала равна А/a.

Учитывая, что большая часть энергии сигнала сосредоточена в области частот 0 - 1/tи, ширина спектра бинарного периодического сигнала приблизительно оценивается по формуле: DFи»1/tи.

При прохождении дискретных сигналов по реальным электрическим цепям радиотехнических средств с ограниченной полосой пропускания их форма искажается и крутизна склона импульса уменьшается. Прямоугольный импульс приобретает колоколообразную форму. В результате этого размывается граница между амплитудой аналогового и дискретного сигналов. Искажения формы и уменьшение амплитуды импульсных сигналов в проводах ограничивают дальность их передачи, например, для обеспечения межмашинного обмена данными в локальных сетях.

По физической природе сигналы могут быть акустическими, электрическими, магнитными, электромагнитными, корпускулярными (в виде потоков элементарных частиц) и материально-вещественными, например, пахучие добавки в газ подают сигнал об его утечке).

Сигналы по виду передаваемой информации делятся на речевые, телеграфные, телекодовые, факсимильные, телевизионные, радиоактивные и условные. Телеграфные и телекодовые сигналы используются для передачи буквенно-цифровой информации с низкой и высокой скоростью соответственно. Факсимильные и телевизионные сигналы обеспечивают передачу неподвижных и подвижных изображений. Сигналы радиоактивных излучений являются демаскирующими признаками радиоактивных веществ. Условные сигналы несут информацию, содержание которой предварительно определено между ее источником и получателем, например, горшок с цветком на подоконнике - о провале явки в литературных произведениях о разведчиках.

Вид информации, содержащей в сигнале, изменяет его демаскирующие признаки: форму, ширину спектра, частотный и динамический диапазон. Например, стандартный речевой сигнал, передаваемый по телефонной линии, имеет ширину спектра 300-3400 Гц, звуковой - 16-20000 Гц, телевизионный - 6-8 МГц и т. д. Произведение В=DFc t c называется базой сигнала. Если В»1, то сигнал узкополосный. При B>>1 - сигнал широкополосный.

По времени проявления сигналы могут быть регулярными, время появления которых получателю информации известно, например, сигналы точного времени, и случайные, когда это время неизвестно. Статистические характеристики проявления случайных сигналов во времени могут представлять собой достаточно информативные демаскирующие признаки источников, прежде всего, об их принадлежности и режимах функционирования. Например, появление в помещении радиосигнала во время ведения в нем разговоров может с достаточно высокой вероятностью служить демаскирующим признаком закладного устройства с акустоавтоматом.

 

<== предыдущая лекция | следующая лекция ==>
Демаскирующие признаки объектов защиты | Видовые, сигнальные и веществен­ные демаскирующие признаки
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 1177; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.