Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Случайные переменные

Случайные сигналы

Основной задачей системы связи является передача информации по каналу связи. Все полезные сигналы сообщений появляются случайным образом, т.е. приемник не знает заранее, какой из возможных символов сообщений будет передан. Кроме того, вслед­ствие различных электрических процессов возникают шумы, которые сопровождают информационные сигналы. Следовательно, нам нужен эффективный способ описания случайных сигналов.

 

Пусть случайная переменная Х(А) представляет функциональное отношение между случайным событием А и действительным числом. Для удобства записи обозначим случайную переменную через X, а ее функциональную зависимость от А будем считать явной. Случайная переменная может быть дискретной или непрерывной. Функция распределения Fx(х) случайной переменной X описывается выражением

Fx(x)=P(X≤ x), (1.4)

 

где Р(Хх) — вероятность того, что значение, принимаемое случайной переменной X, меньше действительного числа х или равно ему. Функция распределения Fx(x) имеет следующие свойства:

1.0 ≤ Fx(x) ≤ 1

2. Fx(x1)Fx(x2), если x1x2

3. Fx( −∞ ) = 0

4. Fx( +∞ ) = 1

Еще одной полезной функцией, связанной со случайной переменной X, является плотность вероятности, которая записывается следующим образом:

. (1.5,а)

Как и в случае функции распределения, плотность вероятности — это функция действительного числа х. Название "функция плотности" появилось вследствие того, что вероятность события x 1 Xx 2 равна следующему:

P (x 1 Xx 2) = P (Xx 2) – P (Xx 1) = (1.5,б)

= Fx(x 2 )Fx(x 1 ) =

.

Используя уравнение (4.5,6), можно приближенно записать вероятность того, что случайная переменная X имеет значение, принадлежащее очень узкому промежутку между х и х + Δ x:

. (1.5,в)

Таким образом, в пределе при Δ x, стремящемся к нулю, мы можем записать следующее:

. (1.5,г)

Плотность вероятности имеет следующие свойства:

1. px(х) ≥ 0

2.

Таким образом, плотность вероятности всегда неотрицательна и имеет единичную площадь. В тексте книги мы будем использовать запись рх(х) для обозначения плотно­сти вероятности непрерывной случайной переменной. Для удобства записи мы часто будем опускать индекс X и писать просто р(х). Если случайная переменная X может принимать только дискретные значения, для обозначения плотности вероятности мы будем использовать запись р(Х=хi).

<== предыдущая лекция | следующая лекция ==>
Автокорреляция периодического сигнала | Структура вычислительной системы. Лекция 1. Введение. Основные термины и определения
Поделиться с друзьями:


Дата добавления: 2014-01-07; Просмотров: 279; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.