![]() КАТЕГОРИИ: Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748) |
Плотность энергии электростатического поля
Энергия электростатического поля. 1. Энергия системы неподвижных точечных зарядов.Электростатические силы взаимодействия консервативны; следовательно, система зарядов обладает потенциальной энергией. Найдем потенциальную энергию системы двух неподвижных точечных зарядов
где
Поэтому Добавляя к системе из двух зарядов последовательно заряды
где 2. Энергия заряженного уединенного проводника.Пусть имеется уединенный проводник, заряд, емкость и потенциал которого соответственно равны q, C, Чтобы зарядить тело от нулевого потенциала до
Энергия заряженного проводника равна той работе, которую необходимо совершить, чтобы зарядить этот проводник:
Формулу (8.12.3.) можно получить и из того, что потенциал проводника во всех его точках одинаков, так как поверхность проводника является эквипотенциальной. Полагая потенциал проводника равным
3. Энергия заряженного конденсатора.Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой (8.12.3.) равна
где q - заряд конденсатора, C - его емкость,
4. Энергия электростатического поля.Преобразуем формулу (8.12.4.), выражающую энергию плоского конденсатора посредством зарядов и потенциалов, воспользовавшись выражением для емкости плоского конденсатора
где V=Sd - объем конденсатора. Формула (8.12.5.) показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, - напряженность Е. Формулы (8.12.4.) и (8.12.5.) соответственно связывают энергию конденсатора с зарядом на его обкладках и с напряженностью поля. Возникает, естественно, вопрос о локализации электростатической энергии и что является ее носителем - заряды или поле ? Ответ на этот вопрос может дать только опыт. Электростатика изучает постоянные во времени поля неподвижных зарядов, т.е. в ней поля и обусловившие их заряды неотделимы друг от друга. Поэтому электростатика ответить на поставленные вопросы не может. Дальнейшее развитие теории и эксперимента показало, что переменные во времени электрические и магнитные поля могут существовать обособленно, независимо от возбудивших их зарядов, и распространяются в пространстве в виде электромагнитных волн, способных переносить энергию. Это убедительно подтверждает основное положение теории близкодействия о локализации энергии в поле и что носителем энергии является поле. Объемная плотностьэнергии электростатического поля (энергия единицы объема)
Выражение (8.12.6.) справедливо только для изотропного диэлектрика,для которого выполняется соотношение:
Поможем в написании учебной работы
Дата добавления: 2014-01-07; Просмотров: 1061; Нарушение авторских прав?; Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Читайте также:
|