Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ЛЕКЦИЯ 4. 3. Переместительный законх0 Ù х1 = х1 Ù х0, х0 Ú х1 = х1 Ú х0, х0 Å х1 = х1 Å х0


3. Переместительный законх0 Ù х1 = х1 Ù х0, х0 Ú х1 = х1 Ú х0, х0 Å х1 = х1 Å х0.

4. Распределительный закон х0 Ù (х1 Ú х2) = (х0 Ù х1) Ú (х0 Ù х2),
х0 Ú (х1 Ù х2) = (х0 Ú х1) Ù (х0 Ú х2),
х0 Ù (х1 Å х2) = (х0 Ù х1) Å (х0 Ù х2).
Докажем второе равенство. Раскрывая скобки его правой части, получаем
х0х0 Ú х0х2 Ú х1х0 Ú х1х2 = х0 Ú х0х2 Ú х1х0 Ú х1х2 = х0(1 Ú х2 Ú х1) Ú х1х2 = х0 Ú х1х2, что и следовало доказать. Остальные равенства очевидны.

5. Закон двойственности (правила де Моргана).Этот закон устанавливает связь между дизъюнкцией и конъюнкцией с помощью инверсии:
х0 Ú х1 = х0х1 = х0 | х1, х0х1 = х0 Ú х1 = х0 ¯ х1.

Эти законы справедливы для любого числа аргументов. Следует отметить, что последние 4 закона используются особенно часто для преобразования ФАЛ. К примеру, докажем равенство: х0 Å х1 = х0х1 Ú х0х1.

Представим сумму по модулю два в виде дизъюнкции, конъюнкции и инверсии:х0х1 Ú х0х1 = (х0х1) ¯ (х0х1). Применив к полученному выражению второе правило де Моргана, получаем (х0х1)(х0х1) = (х0 | x1)(x0 | x1). Теперь к каждому сомножителю применим первое правило де Моргана (х0 Ú х1)(х0 Ú х1) и воспользуемся распределительным законом: х0х0 Ú х0х1 Ú х1х0 Ú х1х1. Согласно пятому тождеству первое и последнее слагаемые обращаются в ноль, т.е. последнее выражение запишется как 0 Ú х0х1 Ú х1х0 Ú 0 или, согласно десятому тождеству, х0х1 Ú х1х0. Применив переместительный закон, окончательно получаем х0х1 Ú х0х1, что и требовалось доказать.

6. Закон поглощения х Ú хz = x, x(x Ú z) = x.

7. Закон склеиванияхz Ú xz = x, (x Ú z)(x Ú z) = x.

 

Справедливость этих двух законов докажите самостоятельно.



 

2.6. Минимизация ФАЛ.

В большинстве случаев совершенная форма записи ФАЛ не является самой простой для аналитического задания КЦУ. Следовательно, её техническая реализация приведёт к излишне сложному устройству. Поэтому логическое выражение прежде всего следует упростить, не нарушая при этом значения функции.

<== предыдущая лекция | следующая лекция ==>
Тождества также отражают правила эквивалентной замены одного логического элемента другим | Упрощение ФАЛ с сохранением её свойств называется минимизацией

Дата добавления: 2014-01-07; Просмотров: 209; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.003 сек.