Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Воздействие гармонического сигнала при степенной аппроксимации





Воздействие гармонического сигнала на нелинейные элементы

 

ВАХ нелинейного элемента описывается степенным полиномом. В этом случае:

i = а0 + а1 (и - U0) + а2 (и - U0)2 + ...

 

приложенное к нелинейному двухполюснику напряжение

.

Воспользовавшись известными формулами для определения спектрального состава тока необходимо преобразовать первую часть так, чтобы все косинусы были в степени единица. Для этого достаточно воспользоваться следующими соотношениями:

 

 

путем подстановки получаем

 

 

Таким образом, спектр тока кроме составляющей с частотой входного сигнала содержит постоянную составляющую и гармоники с частотами, кратными частоте входного сигнала. При определении спектрального состава тока удобно пользоваться следующими правилами:

 

 

а) члены полинома с четными степенями формируют в спектре постоянную составляющую и четные гармоники.

б) члены полинома с нечетными степенями формируют нечетные гармоники.

в) максимальный номер гармоники соответствует показателю степени членов полинома.

 





Дата добавления: 2014-01-07; Просмотров: 251; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Рекомендуемые страницы:

Читайте также:
studopedia.su - Студопедия (2013 - 2021) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление
Генерация страницы за: 0.001 сек.