Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Моделирование поведения ксенобиотика полностью резорбирующегося из места введения




Моделирование поведения ксенобиотика с параллельными путями выведения

Помимо выведения вещества через почки (u) возможно выведение и другими органами, например печенью (G), что приводит к более быстрому снижению его содержания в крови. Полагают, что оба процесса выведения подчиняются закону кинетики 1-го порядка. При этом КЕ = К1 + К2, где:

b* = - (К1 + К2)b; u* = К1 b; G* = К2 b.

При этом для характеристики количества вещества, выделяющегося с мочой или желчью, имеем:

u0/D = K1/K2; G0/D = K2/K1, где

u0/D - часть введенной дозы вещества, выведенная за исследуемое время через почки;

G0/D - часть введенной дозы вещества, выведенная за исследуемое время через печень.

Т.е. соотношение количества вещества, выделяющегося различными путями пропорционально константам скоростей элиминации через эти органы:

Cltot = ClH + ClR

Как правило, токсикант поступает в организм не путем внутривенного введения, а в результате резорбции через легкие, кожу, желудочно-кишечный тракт, из подкожного или внутримышечного депо. При моделировании поведения ксенобиотика полагают, что резорбция также есть кинетический процесс первого порядка.

Предположим в момент времени t = 0 вещество в дозе Д быстро попало в депо М и начался процесс его резорбции в кровь с одновременной элиминацией через почки (u).

Все процессы, приводящие к повышению содержания вещества в крови, вследствие выхода его из места депонирования (поступления в организм) можно обозначить как инвазивные и условно объединить их в единый процесс с константой скорости инвазии КА. Напротив, все процессы, приводящие к уменьшению содержания вещества в организме, обозначаются как элиминационные (см. выше) с константой КЕ. Как правило, при воздействии вещества наблюдаются оба процесса.

Динамика концентрации вещества в плазме крови при этом может быть описана функцией Батемана (Bateman):

Сt = D/Vd KA(KA - KE) (e-Ke t- e-Ka t).

Типичная кривая Батемана представлена на рисунке 6 (для вещества с соотношением КАЕ равным 2)

Рисунок 6. Динамика концентрации вещества в крови (кривая В) при одновременном течении процессов резорбции и элиминации. Соотношение КАЕ равно 2. Кривая А - концентрация вещества в месте аппликации.

На рисунке 7 представлены кривые Батемана для веществ с различными значениями констант скорости инвазивного процесса и одинаковым значением константы скорости элиминации. Все максимумы функций лежат выше кривой, отражающей динамику содержания веществ в крови при их внутривенном введении.

Рисунок 7. Функции Батемана для веществ В, С, Д с различными значениями константы скорости процесса инвазии (В = 2,0; С = 0,5; Д = 0,125 ч-1) при одинаковом значении константы скорости элиминации (0,125 ч-1). Кривая А отражает динамику содержания веществ В, С, Д при их внутривенном введении.

На рисунке также видно, что при одинаковом значении t1/2 элиминации рассматриваемых веществ (кривая А, t1/2 = 5 ч), кажущееся время полувыведения, наблюдаемое при постепенной резорбции токсикантов, существенно отличается от истинного значения и зависит от скорости процесса резорбции. Чем меньше скорость резорбции, тем более выражены различия истинного и кажущегося значений периода полувыведения (для вещества Д t1/2 = 10 часам).

Таким образом, при анализе кривой динамики концентрации вещества в "организме", достаточно корректные данные о скорости элиминации можно получить лишь в тех случаях, когда скорость инвазии вещества значительно превышает скорость элиминации, и лишь в том временном интервале, когда процесс резорбции токсиканта полностью завершен.




Поделиться с друзьями:


Дата добавления: 2014-12-08; Просмотров: 352; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.