Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейная непрерывная детерминированная модель многомерной динамической системы в переменных состояния





Представление в переменных состояния основано на использовании теоремы Коши об эквивалентности представления обыкновенного дифференциального уравнения (ДУ) n -го порядка в виде системы n уравнений 1-го порядка.

Рассмотрим в качестве примера переход от описания модели в виде линейного дифференциального стационарного уравнения 2-го порядка к описанию модели в виде системы двух уравнений 1-го порядка, а затем – к стандартной модели в виде переменных состояния.

Пример. Пусть некая динамическая система описывается линейным ДУ 2-го порядка с постоянными коэффициентами:

Обозначим:

и тогда можно выразить исходное уравнение в виде двух уравнений через состояния z1(t) и z2(t).

Запишем полученную систему из 2-х уравнений 1-го порядка в так называемом векторно-матричном виде:

где z (t) – вектор состояния; x (t) – вектор управления (в данном примере, в частности, x(t) – скаляр).

Это удобная форма записи, т.е. удобная модель динамической системы, использующая понятие переменных состояния zi(t). Такая модель позволяет проследить изменение во времени каждой из составляющих внутренних переменных системы и вывести условия ее управляемости и наблюдаемости (п. 2.7).

Состояние системы отделяет будущее от прошлого, содержит всю информацию о прошлом системы, необходимую для определения реакции на произвольный входной сигнал.

В общем случае n -го порядка исходного линейного ДУ можно записать векторно-матричное уравнение состояния системы

Здесь матрица А (n × n) называется матрицей объекта, а матрица В (n × m), где m – размерность вектора управления – матрицей управления. Такая форма уравнений, разрешенных относительно первых производных, называется стандартной формой.

Не всегда оказывается возможным измерить все состояния системы: z1, z2, …, zn, поэтому вводится уравнение наблюдения, которое позволяет описать, какие из состояний zi и какие из входов xi попадают в вектор наблюдаемых выходных переменных y (t):

,

где z (t) – вектор состояния системы; x (t) – вектор управления; С ­–

матрица наблюдения.

Уравнение наблюдения также является линейным, причем не дифференциальным, а алгебраическим.

В рассмотренном примере 2.4.1 матрица объекта А равна:

ее размерность равна (2 × 2).

Матрица управления В представляет собой вектор-столбец (2 × 1), поскольку вектор управления x(t) в этом примере – скаляр (1 × 1):

Матрица наблюдения С равна единичной матрице:

а матрица D – нулевой:

Уравнения состояния и наблюдения соответствуют структурной схеме (рис. 2.10), где матрицы A, B, C и D указаны как стационарные (с постоянными элементами), хотя в случае нестационарных линейных систем схема останется такой же. Знак обозначает на схеме блок интегрирования: действительно, на входе этого блока находится производная вектора состояния, а на выходе – сам вектор состояния z (t).

 

 

Рис. 2.10. Структурная схема модели линейной стационарной системы управления в переменных состояния

 

Очевидно, что использование модели переменных состояния для анализа многомерных систем требует привлечения теории матриц и линейных векторных пространств.

Более подробный материал по теории матриц можно найти в Приложении 1 в конце данного пособия.

 

Вопросы к разделу 2.4

  1. Какую информацию содержит вектор состояния системы?
  2. Какая теорема позволяет перейти от линейного дифференциального уравнения n -го порядка к векторно-матричному уравнению состояния?
  3. Что описывает уравнение состояния?
  4. Что описывает уравнение наблюдения?
  5. Какова размерность матрицы объекта?
  6. Какова размерность матрицы управления?

 




Поделиться с друзьями:


Дата добавления: 2014-12-27; Просмотров: 537; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.