Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Правило суммирования систематических погрешностей




Классы распределений, используемых в метрологии

Использование на практике вероятностного подхода к оценке погрешностей результатов измерений прежде всего предполагает знание аналитической модели закона распределения рассматриваемой погрешности. Встречающиеся в метрологии распределения достаточно разнообразны. Установлено, что примерно 50% распределений принадлежат к классу экспоненциальных, 30% являются уплощенными, а остальные 20% — различными видами двухмодальных распределений.

Основные законы распределения.

1. Трапециидальное распределение.

К трапециидальным распределениям относятся:

1) равномерное; 2) собств. трапециидальное;

3) треугольное — Симсона.

2. Экспоненциальное распределение.

Наиболее распространенный вид — распределение Гаусса.

3. Уплощенное распределение — композиция равномерного и какого-либо экспоненциального распределения.

4. Семейство распределений Стьюдента.

Эти законы описывают плотность распределения вероятности среднего арифметического, вычисленного по выборке из n случайных отсчетов нормально распределенной генеральной совокупности.

Особенности:

¨ при n<3 s=¥, т.е. дисперсионная оценка ширины разброса становится невозможна;

¨ классический аппарат моментов для оценки формы и ширины распределения Стьюдента с малым числом степеней свободы (n-1) оказывается неработоспособным, их ширина и форма могут быть оценены лишь с использованием доверительной и энтропийной оценок.

5. Двухмодальное распределение.

К ним относятся:

1) дискретное двузначное (рис. а); 2) арксинусоидальное (б); 3) двухмодальные островершинные (в) и кругловершинные (г).

Остро- и кругловершинные двухмодальные распределения получаются как композиция дискретного двузначного и экспоненциального распределений с различными значениями коэффициента a (параметр распределения).

28.Нормальное распределение, также называемое гауссовским распределением или распределением Гаусса — распределение вероятностей, которое задается функцией плотности распределения:

29.Доверительный интервал — термин, используемый в математической статистике при интервальной (в отличие от точечной) оценке статистических параметров, что предпочтительнее при небольшом объёме выборки. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.

В общем случае доверительные интервалы можно строить на основе неравенства Чебышева. При любом законе распределения случайной величины, обладающей моментами первых двух порядков, верхняя граница вероятности попадания отклонения случайной величины х от центра распределения Хц в интервал tSx описывается неравенством Чебышева где Sx — оценка СКО распределения; t — положительное число. Для нахождения доверительного интервала не требуется знать закон распределения результатов наблюдений, но нужно знать оценку СКО. Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверительной вероятности 0,9 для многих законов распределений соответствует доверительный интервал 1,6SX. Неравенство Чебышева дает в данном случае 3,16SX. В связи с этим оно не получило широкого распространения. В метрологической практике используют главным образом квантильные оценки доверительного интервала. Под 100P-процентным квантилем Xр понимают абсциссу такой вертикальной линии, слева от которой площадь под кривой плотности распределения равна Р%. Иначе говоря, квантиль — это значение случайной величины (погрешности) с заданной доверительной вероятностью Р. Например, медиана распределения является 50%-ным квантилем х0,5. Для получения интервальной оценки нормально распределенной случайной величины необходимо: определить точечную оценку МО х̅ и СКО Sx случайной величины по формулам (6.8) и (6.11) соответственно; выбрать доверительную вероятность Р из рекомендуемого ряда значений 0,90; 0,95; 0,99; найти верхнюю хв и нижнюю хн границы в соответствии с уравнениями . Значения хн и хв определяются из таблиц значений интегральной функции распределения F(t) или функции Лапласа Ф(1). Полученный доверительный интервал удовлетворяет условию где n — число измеренных значений; zp — аргумент функции Лапласа Ф(1), отвечающей вероятности Р/2. В данном случае zp называется квантильным множителем. Половина длины доверительного интервала называется доверительной границей погрешности результата измерений.

30. При измерениях могут появляться также очень большие грубые погрешности (промахи), которые возникают, как правило, из-за ошибок или неправильных действий оператора, а также из-за кратковременных отказов или сбоев в работе измерительных приборов и других резких изменений условий проведения измерений. Грубые погрешности обнаруживают и отбрасывают непосредственно в процессе измерений или при математической обработке результатов измерений с использованием специальных критериев.

Наиболее характерными из них являются: неправильный отсчет по шкале измерительного устройства, неправильная запись результата наблюдения (описка), неправильная запись значений отдельных мер использованного набора и т. п., ошибки при действиях с приборами, если они повторяются при измерениях.

Причинами грубых погрешностей могут быть внезапные или кратковременные изменения условий измерения или незамеченные неисправности в аппаратуре.

Оценка наличия грубых погрешностей решается методами математической статистики -- статистической проверкой гипотез. Суть метода сводится к следующему. Выдвигается нулевая гипотеза относительно результата измерения, который вызывает некоторое сомнение и рассматривается как грубый промах в связи с большим отклонением от других результатов измерения. При этом нулевая гипотеза заключается в утверждении, что «сомнительный» результат в действительности принадлежит к возможной совокупности полученных в данных условиях результатов измерений, и получение такого результата вероятно.

Пользуясь определенными статистическими критериями, пытаются опровергнуть нулевую гипотезу, т. е. пытаются доказать ее практическую невероятность. Если это удается, то промах исключают, если нет -- то результат измерения оставляют.

Выбор того или иного критерия основан на принципе практической уверенности. Для этого задаются достаточно малой вероятностью q того, что сомнительный результат действительно мог бы иметь место. Вероятность q называется уровнем значимости и обычно выбирается из ряда: 0,1; 0,05; 0,01 и т. д.

Для данного q определяют критическую область значений критерия проверки нулевой гипотезы. Если значение критерия попадает в эту область, то гипотеза отвергается.

Известен ряд критериев, которые позволяют исключить грубые промахи. К ним, в частности, можно отнести критерий Греббса (Смирнова), Шарлье, Шовене, Диксона и др. Эти критерии основаны на статических оценках параметров распределения, так как в большинстве случаев действительные значения параметров распределения неизвестны.

В наиболее типовом случае систематические составляющие основных погрешностей средств измерений суммируются геометрически, по формуле , поскольку они являются случайными величинами.

Эта формула справедлива, если нет оснований полагать, что функция распределения данной погрешности является несимметричной и имеет несколько максимумов.

Выбор способа суммирования систематических составляющих основных погрешностей не является однозначным и это связано с отсутствием полной информации о законе распределения.

Алгебраическое суммирование часто дает слишком завышенную оценку погрешности.




Поделиться с друзьями:


Дата добавления: 2015-04-24; Просмотров: 992; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.