Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Анализ эффективности




Масштабирование и распределение подзадач по процессорам

В процессе умножения плотной матрицы на вектор количество вычислительных операций для получения скалярного произведения одинаково для всех базовых подзадач. Поэтому в случае когда число процессоров p меньше числа базовых подзадач m, мы можем объединить базовые подзадачи таким образом, чтобы каждый процессор выполнял несколько таких задач, соответствующих непрерывной последовательности строк матрицы А. В этом случае по окончании вычислений каждая базовая подзадача определяет набор элементов результирующего вектора с.

Распределение подзадач между процессорами вычислительной системы может быть выполнено произвольным образом.

Для анализа эффективности параллельных вычислений здесь и далее будут строиться два типа оценок. В первой из них трудоемкость алгоритмов оценивается в количестве вычислительных операций, необходимых для решения поставленной задачи, без учета затрат времени на передачу данных между процессорами, а длительность всех вычислительных операций считается одинаковой. Кроме того, константы в получаемых соотношениях, как правило, не указываются — для первого типа оценок важен прежде всего порядок сложности алгоритма, а не точное выражение времени выполнения вычислений. Как результат, в большинстве случаев подобные оценки получаются достаточно простыми и могут быть использованы для начального анализа эффективности разрабатываемых алгоритмов и методов.

Второй тип оценок направлен на формирование как можно более точных соотношений для предсказания времени выполнения алгоритмов. Получение таких оценок проводится, как правило, при помощи уточнения выражений, полученных на первом этапе. Для этого в имеющиеся соотношения вводятся параметры, задающие длительность выполнения операций, строятся оценки трудоемкости коммуникационных операций, указываются все необходимые константы. Точность получаемых выражений проверяется при помощи вычислительных экспериментов, по результатам которых время выполненных расчетов сравнивается с теоретически предсказанными оценками длительностей вычислений. Как результат, оценки подобного типа имеют, как правило, более сложный вид, но позволяют более точно оценивать эффективность разрабатываемых методов параллельных вычислений.

Рассмотрим трудоемкость алгоритма умножения матрицы на вектор. В случае если матрица А квадратная (m=n), последовательный алгоритм умножения матрицы на вектор имеет сложность T1=n2. В случае параллельных вычислений каждый процессор производит умножение только части (полосы) матрицы A на вектор b, размер этих полос равен n/p строк. При вычислении скалярного произведения одной строки матрицы и вектора необходимо произвести n операций умножения и (n-1) операций сложения. Следовательно, вычислительная трудоемкость параллельного алгоритма определяется выражением:

(6.5)

С учетом этой оценки показатели ускорения и эффективности параллельного алгоритма имеют вид:

(6.6)

Построенные выше оценки времени вычислений выражены в количестве операций и, кроме того, определены без учета затрат на выполнение операций передачи данных. Используем ранее высказанные предположения о том, что выполняемые операции умножения и сложения имеют одинаковую длительность τ. Кроме того, будем предполагать также, что вычислительная система является однородной, т.е. все процессоры, составляющие эту систему, обладают одинаковой производительностью. С учетом введенных предположений время выполнения параллельного алгоритма, связанное непосредственно с вычислениями, составляет

(здесь и далее операция есть округление до целого в большую сторону).

Оценка трудоемкости операции обобщенного сбора данных уже выполнялась в лекции 4 (см. п. 4.3.4). Как уже отмечалась ранее, данная операция может быть выполнена за log2p итераций1). На первой итерации взаимодействующие пары процессоров обмениваются сообщениями объемом (w есть размер одного элемента вектора c в байтах), на второй итерации этот объем увеличивается вдвое и оказывается равным и т.д. Как результат, длительность выполнения операции сбора данных при использовании модели Хокни может быть определена при помощи следующего выражения

(6.7)

где – латентность сети передачи данных, β – пропускная способность сети. Таким образом, общее время выполнения параллельного алгоритма составляет

(6.8)

(для упрощения выражения в (6.8) предполагалось, что значения n/p и log2p являются целыми).




Поделиться с друзьями:


Дата добавления: 2015-06-28; Просмотров: 440; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.