Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Применение греющего кабеля УЭЦН для борьбы с АСПО




 

Одним из главных факторов способствующих выделению парафина из нефти и образования гидратов является температура. Повышение температуры нефтеводогазовой смеси в НКТ, позволяет избежать образования гидратно-парафиновых пробок. Принцип работы греющего кабеля заключается в нагреве внутреннего пространства насосно-компрессорных труб с помощью специального изолированного нагревательного кабеля, помещенного в интервал интенсивного гидрато-парафиноотложения.

Применение того или иного греющего кабеля определяется способом добычи нефти. Для скважин, оснащенных штанговым глубинным насосом (ШГН), нагреть скважинную жидкость можно с помощью нагревательного кабеля, проложенного только снаружи НКТ (рисунок 3,а), так как внутри НКТ находится штанга. Для скважин, оснащенных электроцентробежным насосом (ЭЦН), а также фонтанных и газлифтных нагреть скважинную жидкость можно с помощью нагревательного кабеля, опускаемого в НКТ (рисунок 3,б), через лубрикатор.

 

Рисунок 3 - Расположение нагревательных кабелей в скважине:

а) скважина с ШГН, б) скважины с ЭЦН, фонтанные и газлифтные: 1 - насосно-компрессорная труба; 2 - штанга насоса; 3 - кабель; 4 - обсадная колонна.

 

С помощью пакета прикладных программ ANSYS моделировалось температурное поле в поперечном сечении скважины, оно вычислялось из условия, что дебит равен нулю (рисунок 4,а).

Из рисунка видно, что при мощности кабеля 100 Вт/м температура нефти в НКТ составит 47°С, в то время как при нагреве самонесущим кабелем, расположенным в НКТ, 43°С при мощности 24 Вт/м. (рисунок 4,б).

Следовательно, нагрев кабелем, расположенным внутри НКТ, требует в несколько раз меньшей мощности, чем нагрев кабелем, расположенным снаружи НКТ.

Рисунок 4 - Распределение температуры в поперечном сечении скважины в интервале выпадения парафина

 

К числу методов по борьбе с гидратно-парафиновыми пробками, применяемым на предприятии, относятся: спуск-подъем скребков, горячая обработка скважин нефтью. Данные методы требуют значительных материальных затрат и затрат трудовых ресурсов, а также не всегда оказываются эффективными, что приводит к длительным простоям скважин.

Технология реализуется с помощью установки по прогреву скважин (УПС). УПС позволяет в автоматическом режиме управлять прогревом и обеспечивать защиту нагревательного элемента [14].

Комплект УПС состоит из:

 

1. Нагревательного элемента.

2. Станции управления прогревом.

3. Силового трансформатора.

 

Нагревательный элемент представляет собой специальный термобаростойкий, сложно изготовленный кабель, устойчивый к воздействию агрессивных сред (рисунок 5). Рабочая часть нагревательного элемента имеет изоляционную оболочку, изготовленную из высокотемпературных материалов (фторопласт, сополимер пропилена), на которую затем накладывается броня из стальной оцинкованной проволоки в два повива. На верхний повив накладывается защитная оболочка из синтетического материала.

 

 

Рисунок 5- Греющий кабель КГн12х2,5-55-90-Оа-25,8:

1-центральная жила; 2-оболочка датчиков; 3-контрольные жилы; 4-изоляция контрольных жил; 5,10-теплопроводный заполнитель; 6,11-обмотка; 7,12,13-промежуточная оболочка; 8-токопроводящие жилы нагревательных элементов; 9-разделяющие жгуты; 14,15 -1-й и 2-й повив брони

 

Нагревательный элемент выполняется с коаксиальными обмотками таким образом, что на центральную нагревательную жилу приходится 20% подаваемой электрической мощности, оставшиеся 80% электрической мощности выделяются на коаксиальный проводник, расположенный ближе к поверхности нагревательного элемента. С целью контроля за работой нагревательного элемента в его единую технологическую цепь монтируются датчики температуры.

Спуск нагревательного элемента в скважину проводится с помощью специализированных геофизических подъемников, снабженных необходимым оборудованием. После спуска нагревательного элемента в скважину он закрепляется и герметизируется с помощью специального крепления и сальникового устройства (рисунок 6).

 

 

Рисунок 6 - Крепление и сальниковое устройство для греющего кабеля

 

Станция управления прогревом предназначена для контроля и управления процессом прогрева жидкости в объеме лифтовых труб эксплуатационных скважин.

Станция управления прогревом включает в себя: входной рубильник, входной автоматический выключатель, устройство защитного отключения по току утечки, трехфазный тиристорный управляемый выпрямитель для бесконтактного включения/выключения, терморегуляторы для регулирования и контроля рабочего процесса, приборы измерения тока и напряжения, приборы измерения и управления температурой нагревательного элемента, индикаторы неисправностей.

Станция управления прогревом позволяет:

· осуществлять и прекращать подачу электрического тока на нагревательный элемент;

· контролировать ток, протекающий через нагревательный элемент;

· контролировать напряжение, приложенное к нагревательному элементу;

· регулировать температуру нагревательного элемента в скважине;

· прекращать подачу электрического тока или ограничивать ее при отключении станции управления работой УЭЦН;

· измерять температуру добываемой жидкости в термокармане, врезанном в нефтесборный коллектор;

· измерять и регулировать температуру внутри герметичного шкафа станции управления прогревом;

· автоматически отключать силовой пускатель (снимать напряжение с силового трансформатора и, соответственно, нагревательного элемента) от промышленной сети при наличии тока утечки, а также управлять другими устройствами с помощью контакта промежуточного реле.

Вся аппаратура станции управления прогревом смонтирована в герметичном шкафу. Размер шкафа 1800х1200х400 мм.

Силовой трансформатор обеспечивает питание нагревательного элемента производится в зависимости от скважинных условий: либо непосредственно от промышленной сети напряжением 380В, либо при необходимости увеличения мощности прогрева через силовой трансформатор.

Во время работы установки по прогреву, станции управления накапливает и систематизирует данные температур, токов и напряжений в функции времени. Временные периоды снятия отчетов указанных параметров могут устанавливаться в произвольной форме. В дальнейшем эти параметры могут быть представлены как в графической, так и в табличной форме.

На рисунке 7 представлена схема подключения греющего кабеля к скважине, оборудованной УЭЦН.

 

Рисунок 7 - Схема подключения греющего кабеля

В условиях эксплуатации УЭЦН на скважинах, где приток жидкости из пласта ниже производительности УЭЦН и высокий газовый фактор, применение греющего кабеля позволяет путем установки штуцера (на устье) малого диаметра (2-3 мм) выводить скважины на стабильный режим работы, что в конечном итоге приводит к увеличению межремонтного периода.

 

 

Список литературы

1. Голонский П.П. Борьба с парафином при добыче нефти. - М.: Гостоптехиздат, 1960. - 88 с.

2. Депарафинизаторы. - http:/www.metalop.ru/magnit4.htm.

3. Ибрагимов Г.З., Сорокин В.А., Хисамутдинов Н.И. Химические реагенты для добычи нефти: Справочник рабочего. - М.: Недра, 1986.- 240 с.

4. Карпов Б.В., Воробьев В.П., Казаков В.Т. и др. Предупреждение парафиноотложений при добыче нефти из скважин в осложненных условиях путем применения магнитных устройств // Нефтепромысловое дело. - 1996. - N 12. - С. 17-18.

5. Ковач В.И., Аливанов В.В., Шайдаков В.В. Магнитная активация жидкости как метод защиты от коррозии. // Нефтяное хозяйство - 2002. - N 10 - с.

6. Лесин В.И. Магнитные депарафинизаторы нового поколения /Изобретения и рацпредложения в нефтегазовой промышленности. - 2001. - N 1. - С. 18-20.

7. Люшин С.В., Репин Н.Н. О влиянии скорости потока на интенсивность отложения парафинов в трубах // Сб. борьба с отложениями парафина. - М.: Недра, 1965. - 340 с.

8. Магнитный депарфинизатор "Магнолеум".- http:/ www. mte. gov. ru./ntp/new borud/rka/rka.htm.

9. Малышев А.Г., Черемисин Н.А., Шевченко Г.В. Выбор оптимальных способов борьбы с парафиноотложением // Нефтяное хозяйство. - 1997. - N 9. - С. 62.-69.

10. Персиянцев М.Н. Добыча нефти в осложненных условиях. - М.: ООО "Недра-Бизнесцентр", 2000.-653с.

 




Поделиться с друзьями:


Дата добавления: 2015-08-31; Просмотров: 6288; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.