Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теоремы Чебышева и Бернулли




Неравенство Чебышева.

Неравенство Чебышева, используемое для доказательства дальнейших теорем, справед-ливо как для непрерывных, так и для дискретных случайных величин. Докажем его для дискретных случайных величин.

 

Теорема 13.1(неравенство Чебышева). p( | X – M (X)| < ε) ≥ D (X) / ε². (13.1)

Доказательство. Пусть Х задается рядом распределения

Х х 1 х 2 хп
р р 1 р 2 рп

 

Так как события | X – M (X)| < ε и | X – M (X)| ≥ ε противоположны, то р (| X – M (X)| < ε) + + р (| X – M (X)| ≥ ε) = 1, следовательно, р (| X – M (X)| < ε) = 1 - р (| X – M (X)| ≥ ε). Найдем р (| X – M (X)| ≥ ε).

D (X) = (x 1M (X))² p 1 + (x 2M (X))² p 2 + … + (xn – M (X))² pn. Исключим из этой суммы те слагаемые, для которых | X – M (X)| < ε. При этом сумма может только уменьшиться, так как все входящие в нее слагаемые неотрицательны. Для определенности будем считать, что отброшены первые k слагаемых. Тогда

D (X) ≥ (xk+ 1M (X))² pk+ 1 + (xk+ 2M (X))² pk +2 + … + (xn – M (X))² pn ≥ ε² (pk+ 1 + pk+ 2 + … + pn).

Отметим, что pk+ 1 + pk+ 2 + … + pn есть вероятность того, что | X – M (X)| ≥ ε, так как это сумма вероятностей всех возможных значений Х, для которых это неравенство справедливо. Следовательно, D (X) ≥ ε² р (| X – M (X)| ≥ ε), или р (| X – M (X)| ≥ ε) ≤ D (X) / ε². Тогда вероятность противоположного события p( | X – M (X)| < ε) ≥ D (X) / ε², что и требо-валось доказать.

 

Теорема 13.2 (теорема Чебышева). Если Х 1, Х 2,…, Хп – попарно независимые случайные величины, дисперсии которых равномерно ограничены (D (Xi) ≤ C), то для сколь угодно малого числа ε вероятность неравенства

будет сколь угодно близка к 1, если число случайных величин достаточно велико.

Замечание. Иначе говоря, при выполнении этих условий

Доказательство. Рассмотрим новую случайную величину и найдем ее математическое ожидание. Используя свойства математического ожидания, получим, что . Применим к неравенство Чебышева: Так как рассматриваемые случайные величины независимы, то, учитывая условие теоремы, имеем: Используя этот результат, представим предыдущее неравенство в виде:

Перейдем к пределу при : Поскольку вероятность не может быть больше 1, можно утверждать, что

Теорема доказана.

 

Следствие.

Если Х 1, Х 2, …, Хп – попарно независимые случайные величины с равномерно ограничен-ными дисперсиями, имеющие одинаковое математическое ожидание, равное а, то для любого сколь угодно малого ε > 0 вероятность неравенства будет как угодно близка к 1, если число случайных величин достаточно велико. Иначе говоря, .

Вывод: среднее арифметическое достаточно большого числа случайных величин прини-мает значения, близкие к сумме их математических ожиданий, то есть утрачивает характер случайной величины. Например, если проводится серия измерений какой-либо физической величины, причем: а) результат каждого измерения не зависит от результатов остальных, то есть все результаты представляют собой попарно независимые случайные величины; б) измерения производятся без систематических ошибок (их математические ожидания равны между собой и равны истинному значению а измеряемой величины); в) обеспечена определенная точность измерений, следовательно, дисперсии рассматривае-мых случайных величин равномерно ограничены; то при достаточно большом числе измерений их среднее арифметическое окажется сколь угодно близким к истинному значению измеряемой величины.

 




Поделиться с друзьями:


Дата добавления: 2014-01-04; Просмотров: 1266; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.