Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

III. Производство тяжелой воды

Тяжелая вода применяется в атомной энергетике в качестве замедлителя нейтронов, а также используется для получения химических соединений с тяжелым изотопом водорода.

В природной воде отношение протия к дейтерию составляет (5000÷6000):1. По электрохимическим свойствам изотопы водорода несколько различаются.

Электрохимический метод основан на концентрировании тяжелой воды. Процесс протекает при электролизе вследствие различия в потенциале выделения легкого (протия) и тяжелого (дейтерия) изотопов водорода. Потенциал выделения на катоде дейтерия имеет более отрицательное значения, чем потенциал выделения протия. За счет более высокого перенапряжения (на 0,1 В) и более отрицательного значения равновесного потенциала (на 0,003 В) тяжелого изотопа дейтерия, при электролитическом разложении воды происходит постепенное обогащение жидкой фазы дейтерием.

 

Заключение. Основные направления современного этапа развития электрохимии и электрохимических технологий

И электрохимия как наука, и электрохимические технологии находятся в постоянном развитии. И как любая наука электрохимия имеет свои интенсивно развивающиеся направления исследований. Наличие их объясняется с одной стороны большим количеством еще нерешенных проблем, а с другой – определяется запросами практики от создания эффективных источников энергии до проблем охраны окружающей среды.

Вот некоторые из них:

1. Квантово-химические методы описания переноса заряда через границу раздела. Несмотря на то, что это направление исследований активно развивается уже более полувека, окончательного решения проблемы теоретического описания элементарного акта переноса заряда во всем его многообразии и различных условиях нет.

2.Совершенствование аналитических методов исследования поверхностных процессов с привлечением современных физических и физико-химических методов (исследование процессов in situ, т.е. непосредственно в процессе электрохимического превращения) и на этой основе развитие электрохимического приборостроения.

3. Развитие методов электрохимического материаловедения является одним из важнейших направлений исследований.

4. Дальнейшее развитие и описание процессов электрокатализа постоянно находилось и будет находиться в центре внимания электрохимиков.

5. Детальное описание электрохимических процессов при значительном удалении от состояния термодинамического равновесия, исследование новых, нетрадиционных электрохимических процессов должно играть важную роль в развитии современной электрохимии.

6. Проблемы самоорганизации в электрохимических системах. В открытых системах, в которых имеет место перенос массы и энергии при значительном удалении от состояния термодинамического равновесия, должны возникать временные, а также пространственные диссипативные структуры. Описание и исследование процессов самоорганизации в электрохимических системах уже сейчас находится в центре внимания как технологов (получение наноструктур), так и специалистов в области биоэлектрохимии.

7. Биоэлектрохимия как часть науки о жизни – также является одним из основных направлений современной электрохимии.

8. Создание и промышленное освоение новых, экологически чистых химических источников электрической энергии (электрохимических генераторов, топливных элементов). Для этих целей необходима разработка методов получения топлива, наиболее эффективным из них является водород. Совершенствование и создание новых, в том числе электрохимических методов получения водорода является одной из основных задач современной технологической науки, также как и разработка новых материалов и катализаторов электрохимических процессов.

9. П роблема фотоэлектрохимического разложения воды. Тесно связана с предыдущей задачей в том числе и с использованием принципиально новых материалов.

10. Переход от макро- к микро- и нанотехнологиям, т.е. управлению на уровне ансамбля молекул или даже нескольких молекул. Развитие электрохимических нанотехнологий применительно к процессам обработки, получения новых материалов, процессам электрокатализа и борьбы с коррозией – важнейшая тенденция настоящего периода.

Основные недостатки существующих технологий – это их негативное влияние на окружающую среду и высокая энергоемкость. Проблема взаимодействия электрохимии и экологии является двоякой: с одной стороны – это разработка методов, снижающих нагрузку электрохимических технологий на окружающую среду, а с другой – разработка электрохимических методов защиты окружающей среды, поэтому:

11. Совершенствование существующих электрохимических технологий в плане снижения нагрузки на окружающую среду – одно из основных направлений их развития.

12. Снижение энергоемкости различных электрохимических технологий от получения алюминия из расплавов до методов борьбы с коррозией – одна из важнейших технологических задач.

13. Тесная взаимосвязь электрохимических, электронных и микроэлектронных технологий – существенная особенность современной техники.

Развитие электрохимии и электрохимических технологий конечно не исчерпывается вышеприведенным перечнем.

 

 

<== предыдущая лекция | следующая лекция ==>
II. Существенную роль в промышленности играет также электросинтез | Лекция 1-2
Поделиться с друзьями:


Дата добавления: 2014-01-06; Просмотров: 480; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.