Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

При обратном процессе, при переходе пара в воду или воды в лед, эти теплоты выделяется

Испарение и кипение

Фазовые превращения вещества служат ярким примером проявления закона перехода количественных изменений в качественные.

Фазовые переходы первого рода — это процессы плавления, кристаллизации, испарения, конденсации и т. д. Процессы фазовых переходов первого рода характеризуются тем, что при их осуществлении поглощается или выделяется теплота.

Если взять твердое тело, например лед, то для того что­бы лед превратить в воду, необходимо затратить при нор­мальном давлении 335 дж на каждый грамм льда. Чтобы испарить один грамм воды при температуре кипения 100° С при нормальном давлении 760 мм рт. ст., требуется за­тратить 2260 дж. Это теплоты плавления и испарения.

Qис=rm

Qпл=Lm

Рассмотрим процесс перехода из жидкой фазы в газооб­разную — процесс испарения, в частности процесс кипе­ния. Процесс испарения заключается в том, что молекулы-жидкости, обладающие наибольшей кинетической энергией, выходят через поверхность жидкости наружу, преодолев силы молекулярного притяжения. Чтобы такие молекулы могли проникнуть через поверхностный слой, кинетическая энергия молекулы w0 = kT должна быть больше чем работа, которая совершается против сил молекулярного притяжения. Силу молекулярного притяжения приходится преодолевать не только в пределах поверхностного слоя толщиной г, но и на некотором расстоянии от поверхности жидкости, потому что когда молекула уже вышла за поверхност­ный слой, то на нее продолжают действовать молекулы жид­кости, они продолжают притягивать ее, пока молекула не отдалится на такое расстояние, на котором силы притя­жения достаточно ослабевают. Можно показать, что действие этих сил сказывается на расстоянии, равном радиусу сферы действия молекулярных сил, и можно считать, что молекула должна преодолевать поверхностный слой удвоенной тол­щины 2г. Поэтому кинетическая энергия должна быть больше, чем 2rf, где r — радиус сферы молекулярных сил, a f — средняя величина силы притяжения, действующего на молекулу. Молекулярное давление, очень большая величина. Для воды оно порядка 11 000 атм. Следовательно, молекула должна обладать весьма большой кинетической энергией для того, чтобы она могла выйти на поверхность. В первую очередь на поверхность могут выйти те молекулы, которые обладают наибольшей энергией, наиболее «нагретые» молекулы. В результате этого средняя энергия оставшихся молекул уменьшается и процесс испа­рения будет сопровождаться охлаждением, это охлаждение определяет теплоту испарения.

Одновременно происходит и противоположный процесс. Некоторые молекулы пара из воздуха проникают обратно в жидкость, происходит процесс конденсации. Оба проти­воположно идущих процесса — процесс испарения и про­цесс конденсации — происходят непрерывно. Если испа­рение более интенсивно, чем конденсация, то жидкость ис­паряется. Если конденсация идет более интенсивно, то количество жидкости увеличивается. Может преобладать или первый, или второй процесс, но может быть и равнове­сие. Равновесие может быть только при вполне определенной для данной температуры плотности пара. Такая плотность называется равновесной плотностью, сос­тояние равновесия является динамическим равновесием. При таком равновесии за единицу времени испаряется столь­ко же молекул, сколько их конденсируется. Пар в состоя­нии равновесной плотности называется насыщенным паром. Равновесная плотность паров данной жидкости, а следовательно, и их давление зависят только от темпера­туры: с возрастанием температуры давление насыщающих паров быстро возрастает.

Построим изотермы насыщающего пара. Его изотермы при температурах T1, T2, Тз,..., Tk (если мы строим обыч­ную рV-диаграмму) представляют собой прямые (рис. 1). Эти изотермы не что иное, как горизонтальные участки кривых Ван-дер-Ваальса. Давление для насыщающих паров остается постоянным. Система является двухфазной.

Вернемся к процессу испарения. При адиабатном испа­рении температура понижается. Если же испарение происходит не адиабатно, а изотермически, т. е. если мы подводим теплоту в течение процесса испарения, то количество под­веденной теплоты при постоянной температуре испарения всегда окажется для данной жидкости одним и тем же. При изменении температуры испарения это количество теплоты также изменяется.

При кипении под постоянным давлением температура жидкости остается неизменной. При нагре­вании жидкости до начала кипения большая часть те­плоты, подводимой от на­гревателя, расходуется на нагревание, меньшая часть теплоты расходуется на испарение. Для того что­бы началось кипение, жид­кость должна содержать пузырьки воздуха или дру­гого газа, система должна быть двухфазной, иначе кипение не может начать­ся. Действительно, если в жидкости отсутствуют пу­зырьки газа, то для вскипания, состоящего в образовании и всплывании множества пузырьков, необходимо, чтобы довольно значительное ко­личество наиболее быстрых молекул, сблизившись между собой, образовали хотя бы микроскопический пузырек, который затем послужит в качестве зародыша для большого пузырька. Но, во-первых, такое сближение многих быстрых молекул очень маловероятно, а, во-вторых, микроскопи­ческий пузырек с очень малым радиусом будет испытывать огромное давление р = кривой поверхности, ко­торое его раздавит: кипение не начнется.

Если же в жидкости имеются небольшие пузырьки воз­духа, прилипшие к стенкам сосуда или к другим предметам, находящимся внутри жидкости, то эти пузырьки служат центрами парообразования. Жидкость испаряется внутрь пузырьков, которые растут, затем отрываются и всплывают. Отрывается пузырек не полностью, от него остается неболь­шой зародышевый пузырек, который опять раздувается, отрывается и т. д.

Присмотревшись к кипящей в стеклянном сосуде воде, легко заметить, что действительно все всплывающие пу­зырьки идут цепочками из определенных точек на стенках, где находятся зародышевые пузырьки. Во время кипения вся подводимая к жидкости теплота идет на испарение, поэтому температура кипящей жидкости остается по­стоянной. Причина этого заключается в том, что при самом незначительном повышении температуры испарение жид­кости в пузырьке резко увеличивается, образование и от­рыв пузырьков происходит чаще и снова устанавливается равновесие между притоком теплоты от нагревателя и рас­ходом теплоты на испарение, так как ускорившийся про­цесс испарения вызывает понижение температуры до вели­чины, определяемой суммой атмосферного и гидростатичес­кого давлений в жидкости в месте нахождения пузырька.

Зародышевый пузырек обязательно должен состоять из воздуха или другого газа, но не из пара самой жидкости, ибо только в первом случае он может находиться в равно­весном состоянии. При увеличении внешнего давления пу­зырек сжимается, давление газа в нем растет. Если бы пу­зырек состоял только из пара, то при увеличении давления выше равновесного пар переходил бы в жидкость и объем пузырька уменьшался бы до нуля.

Условие равновесия для пузырька, находящегося в жидкости, можно записать так:

(3. 8)

Здесь р = f(Т) - давление насыщающих паров внутри пузырька,

- давление воздуха внутри пузырька, Р — атмосферное давление, r gh — гидростатическое дав­ление в жидкости на уровне местонахождения пузырька, - Лапласово давление кривой поверхности пузырька.

Пузырек удерживается на стенке, к которой он прилип, с некоторой силой F. До момента отрыва и всплытия пу­зырька эта сила должна быть больше архимедовой силы:

(3. 9)

где r - плотность жидкости, а V — объем пузырька.

<== предыдущая лекция | следующая лекция ==>
Фазовые переходы | Изменение энтропии при фазовых переходах
Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 1194; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.