Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Непрерывность и дифференцируемость

Т-ма. Если ф-ция f(x) дифференц. в т-ке х0 то она непрерывна в этой т-ке, причем имеет место разложения Df в т-ке х0 Df(x0)=f(x0+Dx)-f(x0)= f‘(x0)Dx+a(Dx)Dx (3), где a(Dx)-б/м ф-ия при Dх®0

Док-во. Заметим, что разложение (3) верно, что из него сразу следует что при Dх®0 Df(x0)®0, => в т-ке х0 ф-ция непр. Поэтому осталось док-ть рав-во (3). Если пр-ная $ то из определения (2) и связи предела с б/м =>, что $ б/м ф-ция a(Dх) такая что Df(x0)/Dx=f‘(x0)+a(Dx) отсюда рав-во (3) пол-ся умножением на Dx.

Примеры.

1)Пр-ная постоянная и ф-ция равна 0, т.е. y=c=const "x, тогда y‘=0 для "х. В этом случае Dy/Dx числитель всегда равен пустому мн-ву, сл-но это отношение равно 0, => значит эго отн-ние = 0.

2)Пр-ная степенной ф-ции, у=х^k, y‘=kx^(k-1) " kÎN. Док-м для к=0 исходя из опр-ния пр-ной. Возьмем " т-ку х и дадим приращение Dх составим разностное отношение Dу/Dх=(х+Dх)^2-x^2/Dx=2х+ Dх => lim(Dx®0)Dy/Dx=2x=y‘. В дейст-ти док-ная ф-ла р-раняется для любых к.

3)Пр-ная экспон-ной ф-ции, у=е^x => y‘=e^x. В данном случае Dy/Dx=(e^x+Dx-e^x)/Dx=e^x(e^Dx-1)/ Dx. Одеако предел дробного сомножителя = 1.

4)y=f(x)=½x½=(x, x>0;-x,x<0). Ясна что для " х¹0 производная легко нах-ся, причем при y‘=1при x>0 y‘=-1 при x<0. Однако в т-ке x=0 пр-ная не $. Причина с геом т-ки зрения явл. невозможность проведения бесисл. мн-во кассат. к гр-ку ф-ции. Все кассат. имеют угол от [-1,+1], а с аналит. т-ки зрения означает что прдел 2 не $ при x0=0. При Dx>0 Dy/Dx=Dx/Dx=1=>lim(Dx®0,Dx>0)Dy/Dx=1 А левый предел разн-го отн-ния будет –1. Т.к. одностор. пред. Не совпадают пр-ная не $. В данном случае $ одностор. пр-ная.

Опр. Правой(левой) пр-ной ф-ции в т-ке х0, наз-ся lim отношения (2) при усл. что Dх®0+(Dх®0-).

Из связи вытекает утвержд., если f(x) дифференц. в т-ке х0, то ее одностор. пр-ная также $ и не совпадает f‘(x0-) и f‘(x0+) обратно для $ пр-ной f‘(x0) необходимо, чтобы прав. и лев. пр-ные совпад. между собой. В этом случае они не совпад.

 

17. Пр-ные и дифференциалы выс. Порядков.

Пр-ная f‘(x) – первого порядка; f‘‘(x) – второго; f‘‘‘(x)-третьего; fn(x)=(f(n-1)(x))‘. Пр-ные начиная со второй наз-ся пр-ными выс. порядка.

Дифференциал выс. порядков

dy= f‘(x)dx – диф. первого порядка ф-ции f(x) и обозначается d^2y, т.е. d^2y=f‘‘(x)(dx)^2. Диф. d(d^(n-1)y) от диф. d^(n-1)y наз-ся диф. n-ного порядка ф-ции f(x) и обознач. d^ny.

Теорема Ферма. Пусть ф-ция f(x) определена на интервале (a,b) и в некоторой т-ке х0 этого интервала имеет наибольшее или наименьшее знач. Тогда если в т-ке х0 $ пр-ная, то она = 0, f‘(x0)=0.

2) Теорема Ролля. Пусть на отрезке [a,b] определена ф-ция f(x) причем: f(x) непрерывна на [a,b]; f(x) диф. на (a,b); f(a)=f(b). Тогда $ т-ка сÎ(a,b), в которой f‘(c)=0.

3) Теорема Логранджа. Пусть на отрезке [a,b] определена f(x), причем: f(x) непр. на [a,b]; f(x) диф. на [a,b]. Тогда $ т-ка cÎ(a,b) такая, что справедлива ф-ла (f(b)-f(a))/b-a= f‘(c).

4) Теорема Коши. Пусть ф-ции f(x) и g(x) непр. на [a,b] и диф. на (a,b). Пусть кроме того, g`(x)¹0. Тогда $ т-ка сÎ(a,b) такая, что справедл. ф-ла (f(b)-f(a))/(g(b)-g(a))=f‘(c)/g‘(c).

 

Правило Лопиталя.

Раскрытие 0/0. 1-е правило Лопиталя. Если lim(x®a)f(x)= lim(x®a)g(x), то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x), когда предел $ конечный или бесконечный.

Раскрытие ¥/¥. Второе правило.

Если lim(x®a)f(x)= lim(x®a)g(x)=¥, то lim(x®a)f(x)/g(x)= lim(x®a)f‘(x)/g‘(x). Правила верны тогда, когда x®¥,x®-¥,x®+¥,x®a-,x®a+.

Неопред-ти вида 0¥, ¥-¥, 0^0, 1^¥, ¥^0.

Неопр. 0¥, ¥-¥ сводятся к 0/0 и ¥/¥ путем алгебраических преобразований. А неопр.0^0, 1^¥, ¥^0 с помощью тождества f(x)^g(x)=e^g(x)lnf(x) сводятся к неопр вида 0

Выпуклые и вогнутые функции

Точки перегиба

Выпуклость и вогнутость.

Бесконечно большие последовательности

Гладкая функция

Эластичность функций

Выпуклые и вогнутые ф-ции

Для хар-ки скорости возр. или убыв. ф-ции, а также крутезны гр-ка ф-ции на участке монотонности вводится понятия вогн. вып-ти ф-ции на интервале, частности на всей числ. приямой.

Пр-р. Пусть ф-ция явл-ся пр-ной ф-цией некоторой фирмы, напр. объем вып-ка продукции, а арг. х-числ. раб. силы. Хар-ный график этой ф-ции имеет сл. вид у f(x) возр. для x>0. На инт. От (0,a) ф-ция возр. все быстрее. Его можно р-ривать, как этап образования фирмы вначале которого выпуск растет медленно, поскольку первые рабочие не прошли период адаптации, но с теч. времени эффект привл. доп. раб. рабочих становится все больше, и соотв. ув-ся крутизна графика. На (¥,a) ф-ция возр. все медл. и гр. становится все более пологой. а – это пороговое знач. числ. раб. силы начиная с которого привл. доп. раб. силы начиная с которого привл. раб. силы дает все меньший эффект в объемке вып-ка. А(х) возр. f‘(x)>0 $x³0, но на интервале от 0 до а (0;а) f‘(x) возр. в то время как (0;¥) f‘ убыв., а в т-ке а-max. По критерию монотонности это означает на (0;а) f‘‘(x)³0 (f-выпукла), а на (a;¥) f‘‘(x)£0 (f-вогнута).

Опр. Пусть f(x) дважды диф. ф-ция на (a,b), тогда:

1)назовем ф-цию f(x) выпуклой(вогн) на интервале (a,b), если 2-я пр-ная не отриц, т.е. f‘‘(x)³0 (f‘‘(x)£0) на (a,b)

2)Если в пункте 1 вып-ся строгие нер-ва 2-й пр-ной, то ф-ция наз-ся строго выпуклой(вогнутой) на интервале (a,b)

 

Т-ки перегиба

Опр. Т-ки разд. интервалы строгой выпуклости и строгой вогнутости наз-ся т-ми перегиба т. х0 есть т-ка перегибы, если f‘‘(x0)=0 и 2-я пр-ная меняет знак при переходе через х0=> в любой т-ке перегиба f‘(x) имеет локальный экстремум.

Геометр. т-ка перегиба хар-ся тем что проведенная касат. в этой т-ке имеет т-ки графика по разные стороны.

 

<== предыдущая лекция | следующая лекция ==>
Дифференцирование ф-ций | Выпуклость и вогнутость
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 404; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.