Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Кронекерово произведение

Определение 6.3Пусть и - прямоугольные матрицы соответственно размеров и . Кронекеровым произведением называется матрица размеров следующего блочного строения .

Приведем основные свойства кронекерова произведения матриц.

Свойство 6.2. Пусть и , тогда .

Доказательство следует из правила блочного произведения матриц.

Свойство 6.3. Пусть существуют и , тогда .

Доказательство. По доказанному ранее (Свойство 6.2), имеем . Из полученного равенства вытекает требуемое утверждение.

Свойство 6.4. .

Доказательство следует из определения операций кронекерова произведения и транспонирования матриц.

Свойство 6.5. Пусть - квадратная матрица порядка , а - квадратная матрица порядка , тогда .

Доказательство. Если матрица A имеет верхний треугольный вид, то утверждение получается последовательным разложением определителя по теореме Лапласа по первым m столбцам. Если матрица A имеет нижний треугольный вид, то утверждение получается последовательным разложением определителя по теореме Лапласа по первым m строкам. Рассмотрим случай, когда матрица A не треугольная. Элементарными преобразованиями со строками (а именно, перестановкой строк и прибавлением к одной строки, другой строки умноженной на число) приведём матрицу A к треугольному виду T. Тогда , где - матрица элементарных преобразований. Имеет место равенство , из которого выводим . Поскольку T – треугольная матрица, то . Матрица элементарного преобразования , если она соответствует прибавлению к некоторой строке другой строки, умноженной на число, имеет треугольный вид, и, значит . Если матрица элементарного преобразования соответствует перестановке двух строк, то . Таким образом, . Для доказательства утверждения осталось заметить равенство .

Следствие 6.2. .

Доказательство проведём индукцией по n. Положим и . При n=2 имеем , т.е. утверждение верно. Пусть оно справедливо при n-1. Тогда , что и требовалось доказать.

<== предыдущая лекция | следующая лекция ==>
Алгоритм Штрассена | Формула Фробениуса
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 600; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.