Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Двойственное пространство




Пусть V – линейное пространство над полем P. Линейной формой (функцией) над V называется функция, удовлетворяющая условиям

Свойство 7.3 Линейная форма определена своими значениями на базисных векторах.

Доказательство. Пусть базис V. Вектор x из V разложим по базису . Тогда .

На множестве линейных форм определим операции сложения и умножения на скаляр .

Свойство 7.4 Множество линейных форм образует линейное пространство

Доказательство. Проверим все аксиомы векторного пространства.

Определение 7.14 Пространство линейных форм называется двойственным к исходному пространству.

Свойство 7.5 Двойственное пространство изоморфно исходному.

Доказательство. Для доказательства достаточно показать совпадение размерностей исходного и двойственного пространств. Пусть базис V. Определим линейные формы . Эти линейные формы линейно независимы, и через них выражается любая другая линейная форма. Таким образом, эти линейные формы образуют базис двойственного пространства, и размерность двойственного пространства совпадает с размерностью исходного пространства.

Элементы двойственного пространства называются ковекторами.

Подпространству W линейного пространства V поставим в соответствие подпространство двойственного пространства, состоящее из линейных форм, обращающихся в ноль на всех векторах из W. Отметим некоторые свойства этого соответствия.

Свойство 7.6. Справедливы равенства

1.

2.

3.

4.

Доказательство. Поскольку только нулевая форма обращается в ноль на всех векторах из V, то первое равенство установлено.

Пусть , тогда линейная форма f равна 0 на всех векторах из U+W, а, значит, и . Тем самым установлено включение . Пусть , тогда линейная форма f равна 0 на всех векторах из U и W, а, значит, она равна 0 на всех векторах из U+W, то есть . Таким образом, получено включение . Объединив включение получим второе равенство.

Третье равенство доказывается аналогично второму равенству.

Пусть базис W, дополним его до базиса всего пространства векторами . Определим линейные формы , где j=1,…,n. Линейные формы образуют базис двойственного пространства и принадлежат . Покажем, что базис . Возьмём произвольную линейную форму f из и разложим её по базису . Тогда , и, значит, . Тем самым четвёртое равенство доказано.

Из четвёртого свойства вытекает, что размерность пространства решений системы однородных линейных уравнений равна разности размерности всего пространства и (строчечного) ранга матрицы.

Вектор из пространства V можно рассматривать как линейную форму в двойственном пространстве. Действительно, и . Следовательно, подпространству F двойственного пространства к V можно поставить в соответствие подпространство пространства V, образованное векторами из V, обращающими в 0 все линейные формы из F.

Свойство 7.7 Пусть - подпространство конечномерного линейного пространства . Тогда.

Доказательство. Пусть , тогда для всех линейных форм из , а, значит, . Тем самым установлено включение . Далее, , следовательно, .

Следствие 7.12 Любое подпространство арифметического пространства можно задать системой линейных уравнений.

Доказательство. Очевидным образом следует из равенства .

Рассмотрим задачу построения системы однородных линейных уравнений задающих линейную оболочку системы векторов (для определённости будем считать эту систему векторов линейно независимой а исходное пространство арифметическим). Следуя проведённым теоретическим построениям, мы должны поступать следующим образом. Дополним систему векторов до базиса всего пространства векторами . Далее, найдём обратную матрицу к матрице A, составленную из векторов . Последние n-k строк матрицы будут определять требуемую систему. Однако, можно уменьшить объём вычислений. Действительно, базис подпространства определяется как базис пространства решений однородной системы линейных уравнений .

Следствие 7.13 Любое линейное многообразие можно задать системой неоднородных уравнений.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 646; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.