Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Состав и характеристики физико-механических свойств титановольфрамовых марок твердых сплавов по ГОСТ 3882-74

Так же, как и у сплавов ВК, предел прочности при изгибе и сжатии, а также ударная вязкость у сплавов ТК увеличиваются с ростом содержания кобальта.

С увеличением содержания углерода в пределах трехфазной области прочность при изгибе растет, а твердость и износостойкость снижаются.

Наличие структурно свободного углерода приводит одновременно к сниже­нию прочности, твердости и износостойкости при резании. Присутствие в спла­ве г-фазы снижает предел прочности при изгибе, но повышает твердость и износостойкость при резании.

У сплавов с одинаковым содержанием кобальта и одинаковым размером карбидных фаз предел прочности при изгибе и сжатии, ударная вязкость, пла­стическая деформация и модуль упругости уменьшаются при увеличении со­держания карбида титана.

В соответствии с приведенными закономерностями меняются и режущие свойства сплавов: увеличение содержания кобальта приводит к снижению из­носостойкости сплавов при резании, а с ростом содержания карбида титана (при постоянном объемном содержании кобальта) повышается износостой­кость, но одновременно снижается эксплуатационная прочность. Поэтому такие марки сплавов, как ТЗОК4 и Т15К6, обладающие максимальным запасом пла­стической прочности, применяют в условиях чистовой и получистовой обра­ботки стали с высокой скоростью резания, малыми и умеренными нагрузка­ми на инструмент. Сплавы Т5К10, Т5К12 с наибольшим содержанием кобальта и запасом хрупкой прочности предназначены для работы в тяжелых условиях ударных нагрузок с пониженной скоростью резания.

Титанотанталовольфрамовые твердые сплавы. Промышленные титанотанталовольфрамовые твердые сплавы (сплавы ТТК) состоят из трех ос­новных фаз: твердого раствора (Ti, W, Та)С, карбида вольфрама и твердого раствора на основе кобальта.

Введение в сплавы карбида тантала улучшает их физико-механические и эксплуатационные свойства, что выражается в увеличении прочности при из­гибе и твердости при комнатной и повышенной температурах, увеличении ра­боты деформации при повышенных температурах.

Карбид тантала в сплавах снижает ползучесть, существенно повышает предел усталости трехфазных сплавов при циклическом нагружении, а также повышает термостойкость и стойкость против окисления на воздухе.

Стандарт (ГОСТ 3882-74) содержит пять марок сплавов этой группы -ТТ8К6, ТТ10К8-Б, ТТ7К12, ТТ20К9 и Т8К7, в которых содержание карбида тан­тала колеблется от 2 до 12% (табл. 1.8).

Исследование режущих свойств сплавов ТТК показало, что увеличение в сплаве содержания карбида тантала повышает его износостойкость при резании, особенно за счет меньшей склонности к лункообразованию и разру­шению под действием термоциклических и усталостных нагрузок.

С учетом отмеченных свойств, сплавы ТТК рекомендуют для тяжелой обработки, резания труднообрабатываемых материалов при значительном термомеханическом нагружении инструмента, а также операций прерывистого резания, особенно фрезерования, отличающихся переменным сечением среза и циклическими термомеханическими нагрузками на режущую часть инструмента.

Наибольшей хрупкой прочностью среди сплавов группы ТТК обладает сплав ТТ7К12, который рекомендуют для обработки стали в особо неблагопри­ятных условиях (прерывистое точение, строгание, черновое фрезерование).

Применение инструмента из сплава ТТ7К12 взамен быстрорежущего инстру­мента позволяет повысить скорость резания в 1,5….за.

Для операций фрезерования рекомендуются сплавы марки ТТ20К9 (для обработки стали) и ТТ8К7 (для обработки чугуна). Для чистового и получисто­вого точения, растачивания и фрезерования серого и ковкого чугуна, цветных металлов, непрерывного точения высокопрочных, нержавеющих сталей, в том числе и термообработанных, а также титановых сплавов предназначен сплав марки ТТ8К6.

Черновое, получерновое точение и фрезерование высоколегированных, не­ржавеющих и жаропрочных сталей и некоторых сплавов успешно осуществля­ются инструментом из сплава марки ТТ10К8-Б.

Таблица 1.8

<== предыдущая лекция | следующая лекция ==>
Составы наиболее применяемых кобальтовых быстрорежущих сталей | Состав и характеристики физико-механических свойств
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 908; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.